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MAT3004 – Abstract Algebra I

Tutorial 9

Noether’s Isomorphism Theorems In abstract algebra, we are always interested in quotient
structures. Noether’s Isomorphism Theorems (in memory of the female mathematician Emmy
Noether) provides a series of results that describe the isomorphic relationship of these objects.
Versions of these theorems exist for groups, rings, vector spaces, modules, Lie algebras, and various
other algebraic structures. We here describe the theorem for rings.

Theorem 1 (Isomorphism Theorems for Rings).

a) (First Isomorphism Theorem) Let φ : R→ S be a homomorphism of rings. Then R/ ker(φ) ∼=
im(φ).

b) (Second Isomorphism Theorem) Let R be a ring, S be a subring of R, I be an ideal of R.
Then (S + I)/I ∼= S/(S ∩ I).

c) (Third Isomorphism Theorem) Let R be a ring, I, J be ideals such that I ⊂ J ⊂ R, then
(R/I)/(J/I) ∼= R/J .

d) (Correspondence Theorem)1 Let R be a ring, I be an ideal. Then there is a one-to-one
correspondence:

{ideals of R containing I} ↔ {ideals of R/I}

The first isomorphism theorem is introduced in class, and the corresponding theorem is proven in
Homework 8. We hence focus on the Second and the Third Isomorphism Theorems. We need the
following preliminary result:

Lemma 2 (Universal Property of Quotient Rings). Let R be a ring, I be an ideal. and let
π : R → R/I be the canonical projection onto the quotient ring. Let φ : R → S be a ring
homomorphism such that I ⊂ ker(φ), then there exists a unique homomorphism ψ : R/I → S
such that φ = ψ ◦ π and ker(ψ) = ker(φ)/I. We can express this statement in terms of a
commutative diagram:

R R/I

S

φ

π

∃!ψ

In other words, the canonical projection is universal among ring homomorphisms on R that map
I to the identity.

1In fact, in another version of this theorem, we have an one-to-one correspondence between subrings of R containing
I and subrings of R/I. Check https://proofwiki.org/wiki/Fourth_Isomorphism_Theorem for more details.
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Exercise E9.1 (A walk through the isomorphism theorems):
In this exercise, we aim to first prove the lemma, then use it to prove the isomorphism theorems.

a) For the lemma, show that by defining ψ(r + I) = φ(r) we obtain a well-defined ring
homomorphism such that φ = ψ ◦ π and ker(ψ) = ker(φ)/I.

b) Directly apply this lemma to prove the First Isomorphism Theorem.
c) For the second isomorphism theorem, show by the definition of subrings and ideals that

• S + I is a subring of R
• I is an ideal of S + I

d) Apply the First Isomorphism Theorem to the canonical projection map restricted on S:
π|S : S → R/I. Prove that the Second Isomorphism Theorem holds.

e) For the Third Isomorphism Theorem, show that there exists a ring homomorphism ψ :
R/I → R/J such that πJ = ψ ◦ πI where πI : R → R/I and πJ : R → R/J are canonical
projections.

f) Apply the First Isomorphism Theorem to ψ constructed in (e) and prove the Third Isomor-
phism Theorem.

As we have pointed out, ideals are ring analogues of normal subgroups. These isomorphism
theorems also have a group theory version, with normal subgroups substituting ideals, subgroups
substituting subrings. Try to formulate them on your own and compare your formulation with
Wikipedia.

Some constructions of rings We now seek for some connections between rings and algebraic
structures that we are familiar with.

Exercise E9.2 (Endomorphism rings):
Let G be an abelian group. Then define

End(G) = {φ : G→ G homomorphism}

a) Show that with addition being pointwise addition and multiplication being composition,
End(G) forms a unital ring. What is the identity and the unity of this ring?

b) We now show that when G is not abelian, End(G) need not be a group. Let G = S3 and
define homomorphisms φ, ψ : S3 → S3 by

φ(σ) =
{

(1 2), σ is a transposition
(1), otherwise

, ψ(σ) =
{

(1 3), σ is a transposition
(1), otherwise

Consider the ‘sum’ φ+ ψ, is it still an endomorphism? (Hint: consider the image of (1 2)
under φ+ ψ).

Now we consider the vector space analogue. Let V be an n-dimensional vector space over F. Then
define

End(V ) = {T : V → V linear map}

c) Identify End(V ) with the matrix ring Mn(F). Conclude that End(V ) has ring structure.
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Exercise E9.3 (Group rings):
Let G be a multiplicative group and R be a ring. Define the group ring as

R[G] = {
∑
g∈G

rgg | rg ∈ R, there are only finitely many rg 6= 0}

in other words, R[G] consists of formal linear combinations of G with coefficients in R. Two
elements

∑
g∈G rgg and

∑
g∈G sgg are equal in R[G] iff rg = sg for all g ∈ G. Define the addition

and multiplication in R[G] by ∑
g∈G

rgg +
∑
g∈G

sgg =
∑
g∈G

(rg + sg)g∑
g∈G

rgg

 ∑
g∈G

sgg

 =
∑
g∈G

 ∑
hk=g

rhsk

 g

a) Prove that R[G] is indeed a ring.
b) Prove that R[G] is commutative if and only if R is commutative and G is abelian.

For the following, assume R is unital with unity 1.

c) Let e be the identity of G. Show that R[G] is unital with unity 1e.
d) Identify R as a subring of R[G].
e) If G is finite and non-trivial, show that R[G] is not an integral domain. (Hint: try to show

that
∑
g∈G 1g is a zero divisor).
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