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Group actions, formally We have, recurrently, emphasized that groups are actually collections
of ‘actions’. However we have never made this idea precise. We now formally define group actions
to its maximum generality, and we will go through a number of examples.

Definition (Group action). For a group G and a set S, a (left) group action α of G on S is a
function

α : G× S → S

often denoted by (g, s) α7→ g.s such that

a) e.s = s
b) (gh).s = g.(h.s)

for all g, h ∈ G and s ∈ S.

Example 1. In all of the following examples, no matter what additional structure that S (the
space being acted on) has, we ‘forget’ it: that is, we treat it as a mere set.

a) (Group acting on itself) It is almost trivial to verify that for all group G,

` : G×G→ G, (g, h) `7→ gh

is a left group action. Show that

r : G×G→ G, (g, h) r7→ hg−1

and
ϕ : G×G→ G, (g, h) ϕ7→ ghg−1

are left group actions.
b) (General linear groups) The real general linear (or special linear) group GL(n,R) (or

SL(n,R)) acts on the vector space Rn (or Mn(R)) by (A, x) 7→ Ax where Ax is the usual
matrix-vector product (or the usual matrix product).

c) (Symmetric groups) The symmetric group Sn (or the alternating group An) acts on the set
[n] = {1, · · · , n} by (σ, i) 7→ σ(i) (recall the elements of Sn are bijections σ : [n]→ [n])

d) (Automorphism groups) For any group G, the automorphism group Aut(G) is the group
consisting of all isomorphisms φ : G→ G. Aut(G) acts on G by (φ, g) 7→ φ(g).

Exercise E5.1 (What is not a group action?):
Show that the following are not group actions.

a) For any group G, is the following map

r∗ : G×G→ G, (g, h) r∗
7→ hg

a left group action? What if G is an abelian group?
b) Consider the map that takes a pair (A,X) ∈Mn(R)×GL(n,R) to A+X. Is it an action

of Mn(R) on GL(n,R)?

Page 1 of 4



Orbits and stabilizers Given a group action α : G × S → S, we are interested in how a
particular element s ∈ S is affected by the group action. This motivates the following two
definitions:

Definition (Orbit). The orbit of element s in S is the set of elements in S to which s can be
‘moved’, denoted by G.s:

G.s = {g.s | g ∈ G}

Two orbits are either disjoint or the same. In other words, the set of orbits of S under the action
of G forms a partition of S. To see this, suppose z ∈ G.x ∩G.y, then there exists h, k ∈ G s.t.
z = h.x = k.y. This implies for all g ∈ G,

g.x = (gh−1h).x = (gh−1).(h.x) = (gh−1).(k.y) = (gh−1k).y ∈ G.y

Hence G.x ⊂ G.y. Using the same argument we have the reversed inclusion.

A group action is transitive if for all s ∈ S, the orbit G.s of s is exactly S. By our previous
argument, this is equivalent to: ∃ s ∈ S s.t. G.s = S.

Definition (Stabilizer). The stabilizer subgroup Stab(x) of G with respect to s is the set of all
elements in G that fix x

Stab(x) = {g ∈ G | g.x = x}

We haven’t actually shown that Stab(x) is in fact a subgroup of G. But this is easy as soon as we
notice the properties of a group action: for g, h ∈ Stab(x),

(gh).x = g.(h.x) = g.x = x, ⇒ gh ∈ Stab(x)

and
x = e.x = (g−1g).x = g−1.(g.x) = g−1.x, ⇒ g−1 ∈ Stab(x)

Hence Stab(x) is a subgroup of G. Other names for Stab(x) include isotropy group and little
group.

Exercise E5.2 (Orbits and stabilizers):
We re-examine some examples of group actions given above.

a) For any group G, show that ` and r defined in Example 1. a) are transitive group actions
with stabilizer subgroups Stab(x) being trivial for all x ∈ G.

b) Consider the action GL(n,R) on Rn defined in Example 1. b). Find all orbits of this action.
c) For any group G and H / G, consider a map from G × G/H to G/H by (g, aH) 7→ gaH.

Verify that this map defines a transitive action of G on G/H. Show that the stabilizer
Stab(aH) = H for all a ∈ G.

d) Consider the action of Sn on [n] defined in Example 1. c). Show that group action is
transitive. Also show that the stabilizer subgroup Stab(i) ∼= Sn−1 for all i ∈ [n].

We observe that in part (a) of Exercise E5.2, assuming G is finite, we have |G| = |G| · 1 = |G.x| ·
|Stab(x)|; in part (c), assuming G is finite, we have by Lagrange’s theorem that |G| = |G/H|·|H| =
|G.aH| · |Stab(aH)|; and in part (d), |Sn| = n! = n · (n − 1)! = n · |Sn−1| = |Sn.i| · |Stab(i)|.
Lagrange’s theorem tells us in these cases we have

[G : Stab(x)] = |G.x|

for all x ∈ S. Is this true only for the case of transitive actions?

Page 2 of 4



Orbit-stabilizer theorem In this part, we provide a negative answer to the previous question:
for ANY action of G on a set S, we have

[G : Stab(x)] = |G.x|

for all x ∈ S. We now focus to prove this statement.

Let G/Stab(x) be the left coset space of Stab(x). We aim to establish a bijection between
G/Stab(x) and G.x. We start by defining a map

φ : G→ G.x, φ(g) = g.x

Clearly this map is a surjection by the definition of G.x. Now for some g, h ∈ G,

φ(g) = φ(h) ⇐⇒ g.x = h.x ⇐⇒ g−1h.x = x ⇐⇒ g−1h ∈ Stab(x) ⇐⇒ gStab(x) = hStab(x)

Then φ induces a well-defined map

φ̃ : G/Stab(x)→ G.x, gStab(x) 7→ G.x

By the previous argument, φ̃ is a bijection as desired. Hence we conclude the proof.

When G is a finite group, Lagrange’s theorem tells us [G : Stab(x)] = |G|/|Stab(x)|. Rearranging,
the orbit-stabilizer theorem when G is finite takes the form

|G| = |G.x| · |Stab(x)|.

Exercise E5.3 (Conjugate class):
We now aim to apply the orbit-stabilizer theorem to solve some of the homework problems, related
to conjugacy classes.

a) Conclude directly by the orbit-stabilizer theorem that in A5, the 5-cycles cannot be in one
orbit.

b) Recall the action ϕ of G on G defined in Example 1. a). Show that the conjugacy class of x

Cx := {gxg−1 | g ∈ G}

is the orbit G.x of x. Show that the centralizer of x

ZG(x) := {g ∈ G | gxg−1 = x}

Conclude directly that when G finite, |Cx| divides |G|, and |G|/|Cx| = |ZG(x)|.

More on conjugation In Homework 4, we have shown that the conjugation by g

φg : G→ G, x 7→ gxg−1

is an automorphism. These automorphisms have another name: inner automorphisms.
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Exercise E5.4 (Inner automorphisms):
Let

Inn(G) = {φg | g ∈ G}

be the set of all inner automorphisms.

a) Show by the first isomorphism theorem that G/Z(G) ∼= Inn(G), where Z(G) is the center
of G:

Z(G) = {g ∈ G | gx = xg, ∀x ∈ G}

(Hint: consider φ : G→ Aut(G) by g 7→ φg. This also shows that Inn(G) ≤ Aut(G).)
b) Show that Inn(G) /Aut(G).

Roughly, Inn(G) can be seen as a measure of ‘non-abelian-ness’ - an inner automorphism φg is
not the identity mapping implies g does not commute with all elements in G.

Since Inn(G) /Aut(G), we can define the outer automorphism group, by

Out(G) = Aut(G)/Inn(G)

Then we have the following exact sequence:

1→ Z(G)→ G
φ→ Aut(G)→ Out(G)→ 1

which means for any G f1→ H
f2→ K in the sequence, we have imf1 = ker f2.
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