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Tutorial 1

Introduction What is abstract algebra?

Abstract algebra is the study of abstract algebraic structures. Well, the question now reduces to:
what are algebraic structures?

Essentially, an algebraic structure consists of an nonempty set A with a collection of operations
on A with finite arity (number of arguments of a function or operation)1, and a finite set of
identities2, which are called axioms.

Example 1. A group (G, ·) consists of a nonempty set G, three operations:

(O1) µ : G×G→ G, (a, b) 7→ ab (multiplication);
(O2) e : {∅} → G, ∅ 7→ e (identity);
(O3) i : G→ G, a 7→ a−1 (inverse);

and three axioms:

(A1) (ab)c = a(bc) (associativity);
(A2) ae = ea = a, ∀ a ∈ G (identity);
(A3) aa−1 = a−1a = e, ∀ a ∈ G (inverse);

Hierarchy of structures A motivation of the study of abstract algebra is the tradeoff between
generality and the richness of the theory: the more general a structure is, the less you can say
about the structure; vice versa. The algebraic structures that we will encounter throughout this
course will all be structured sets, hence all set theory results apply to groups, rings, fields; however,
we cannot make group-theoretic claims to sets in their generality.

In terms of generality, algebraic structures form a hierarchy3. From a particular structure, we can
delete some of the operations and axioms to create a more general structure; we can also add
operations and axioms to create a more specified structure.

Magma, semigroups, monoids Starting with the formulation of a group in Example 1, we
can define some more general structures:

• A monoid is the structure when we delete (O3) and (A3) from the group operations &
axioms (no more inverses);
• A semigroup is the structure when we delete (O2) and (A2) from the monoid operations

& axioms (no more identity);

1In daily usage, we seldom say an operation ∗ has arity k, instead we say ∗ is a k-ary operation. The convention is
to use a Latin prefix with -ary ending.

2Note that in this context, identity basically means equality; not to be confused with the identity element of a
group!

3The following example is somewhat misleading: the hierarchy is not always linear.
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• A magma is the structure when we delete (A1) from the semigroup axiom (there was
associativity, and it’s gone!);

Exercise E1.1 (Integers):
In this exercise, we will re-learn preschool arithmetic, from an abstract algebra perspective! Under
the binary operation +, the usual addition:

a) What algebraic structure does Z, the set of integers, have?
b) What algebraic structure does N, the set of natural numbers, have?
c) What algebraic structure does N+ = N \ {0}, the set of positive integers, have?

Now let the binary operation be ·, the usual multiplication.

d) What are the respective structures of Z, N+, and {±1}?

Define the binary operation ˆ by â b = ab.

e) Show that Z is a magma under the binary operation .̂
f) Does Z \ {0} together with /, the usual division, form any of the algebraic structures

introduced above? Why or why not?

Closure The reason why the nonzero integers do not form any algebraic structure under division
is quite obvious - the quotient of two integers may not even be an integer! However, believe it or
not, many beginners are too overwhelmed by the operations and axioms of an algebraic structure,
such that they often forget to verify closure.

Exercise E1.2 (Multiplication modulo a prime):
The purpose of the following exercise is to show: The set [n− 1] = {1, 2, · · · , n− 1} is a group
under multiplication modulo n if and only if n is prime. We carry out the details step by step.

a) Show that if n is prime, then ([n− 1],×) is an abelian monoid with identity 1.
b) Show by Euclidean algorithm (Bézout’s Theorem) that there is indeed an inverse for every

element in ([n− 1],×), making it a group.
c) Show the contrapositive of the forward direction: if n is a composite, then the set [n− 1]

does not form a group since it is not closed.

Groups, as actions The previous exercise shows that groups and related structures are like
numbers, and binary operations are like arithmetic operations. However, we are now seeing from
a different perspective. Instead of seeing the group elements as objects, we can see them as
actions. In general, a group can be seen as the collection of actions on many things, say, sets
(symmetric group, Cayley’s theorem), groups (group action), vector spaces (representation theory).
We now particularly focus on one case, where the group elements are symmetries of a geometric
object. These groups are called symmetry groups4. Let’s see a few examples.

Example 2. Here are a few familiar groups, regarded as symmetries on geometric objects.

a) (Z,+) is the symmetry group of an infinite comb. A group element k is the translation by k
units.

b) (Zn,+) is the symmetry group of a regular n-gon with arrows. A group element [k] is the
rotation by k · 2π

n radians.

4Not to be confused with symmetric groups, which consists of all automorphisms of some set.
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c) Can you give an example of a geometric object such that V , the Klein 4-group, is its
symmetry group? (A rectangle, or an ellipse)

d) What is the symmetry group of a regular n-gon? What are the group elements other than
rotations? (Dihedral groups; the reflections)

In this example, what does the binary operation do? Clearly, it does not make sense to calculate
the sum or product of two actions. What we did is actually composition5 - we first apply one
action, then apply another. See if this interpretation makes sense in the previous examples!

Since compositionality can be captured by a binary operation, we might want to inspect the usual
actions that we compose, and check whether these actions form a group.

Example 3.

a) Let S be a finite set with n elements. Then the bijections from S to itself forms a group
under function composition. (Essentially, what is this group?)

b) Let V be a finite-dimensional vector space over R. Then the invertible linear transformations
from V to itself forms a group under composition. (Essentially, what is this group?)

Don’t take commutativity for granted! In a group G where ab = ba for all a, b ∈ G, we
say that G is abelian, or that the binary operation is commutative. If we use the intuition
that we gained from numbers, it is really easy to hold the false belief that all groups are abelian.
Here we provide an example to illustrate that symmetries are not commutative:

Consider an equilateral triangle 4 and label the vertices. Obviously, a reflection wrt the vertical
axis and a clockwise rotation by 2π/3 are symmetries of the triangle. Try to apply reflection first,
then rotation; also try to apply rotation first, then reflection. Will the labels of the resulting
triangle be the same?

Exercise E1.3 (Abelian):
The following exercise is supposed to provide a better understanding of the abelian property.

a) (Left-right cancellation) Let G be a group such that for any x, y, z ∈ G with xy = zx, y = z
iff G is abelian.

b) (Middle cancellation) Let G be a group such that for every a, b, c, d, x ∈ G with axb = cxd,
ab = cd iff G is abelian. Can you think of an example of G and choices of a, b, c, d, x where
axb = cxd but ab 6= cd?

c) (Order 2) If G is a group with the property that the square of every element is the identity,
then G is abelian.

Hint. To prove G is abelian, all we need to do is to prove ab = ba for all a, b ∈ G.
For a), let x = a−1, y = ab, z = ba.
For b), let c = b, d = a, x = a−1.
For c), multiply a on the left and b on the right of (ab)2 = e.

To construct an counterexample such that axb = cxd but ab 6= cd, we must start with an non-
abelian group: we try the symmetry group of an equilateral triangle, as we have shown that it is
non-abelian. Also, we want to make sure that at least one of b or d does not commute with x,
otherwise abx = axb = cxd = cdx, and applying right cancellation yields ab = cd. The rest of the
construction is left as exercise.

5By convention, our compositions are right-associative: we apply the right-most action first.
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