
Two-tone Shift-XOR Storage Codes
Ximing Fu, Chenhao Wu, Yuanxin Guo and Shenghao Yang†

Abstract—Storage codes using shift and XOR operations have
been studied to achieve lower encoding and decoding computation
costs, compared with the codes using large finite field operations.
In this paper, we introduce a new class of shift-XOR codes
using two-tone generator matrices, which generalize the existing
increasing-difference generator matrices. Compared with the
latter, our codes only have 1/3 to 1/2 storage overhead for
practical cases, and have a decoding algorithm that preserves the
desired properties. For two-tone shift-XOR codes, the reflected
Vandermonde matrices achieve the smallest storage overhead;
and for increasing-difference shift-XOR codes, the Vandermonde
matrices achieve the smallest storage overhead. To verify the
practical performance, we implement two-tone shift-XOR storage
codes using C++ and compare the encoding/decoding throughput
with the state-of-the-art implementation of Reed-Solomon codes.
For certain practical cases, our codes can achieve from 50% to
100% higher encoding/decoding throughput than that of Reed-
Solomon codes.

I. INTRODUCTION

Finite field operations have been extensively studied for
distributed storage codes. For example, Reed-Solomon (RS)
codes [1] and Cauchy RS codes [2] are widely used MDS
(maximum-distance separable) codes in distributed storage
systems [3]–[5]. Though optimal in terms of erasure correction
capability, researchers have studied various alternative storage
codes that entail lower computational costs. For example,
cyclic shift over finite fields and XOR operations were em-
ployed in array codes [6]. An [n, k] erasure code enables
correct decoding from any k out of n coded sequences.
For any k ≤ n, [n, k] erasure codes using cyclic shift and
XOR operations have been constructed using Vandermonde-
type generator matrices [7], [8]. Another coding scheme using
cyclic shift and integer addition was proposed in [9].

In this paper, we focus on codes employing (noncyclic)
shift and XOR operations [10]–[17], which potentially have
the lowest encoding and decoding computational costs among
the existing [n, k] erasure coding techniques. In an [n, k] shift-
XOR code, a data file formed by k message sequences each
of L bits is encoded into n sequences, where encoding one
coded sequences requires at most (k − 1)L XOR operations.

The low computation cost of shift-XOR codes as the price of
the extra storage cost. Due to the shift operation, each coded
sequence may be longer than L bits, so that the shift-XOR

The authors are with The Chinese University of Hong Kong, Shenzhen.
X. Fu is also with University of Science and Technology of China. S. Yang
is also with Shenzhen Key Laboratory of IoT Intelligent Systems and
Wireless Network Technology, and Shenzhen Research Institute of Big Data,
Shenzhen, China. This work was funded in part by Shenzhen Science
and Technology Innovation Committee (Grant ZDSYS20170725140921348,
JCYJ20180508162604311).

† Corresponding author. Email: shyang@cuhk.edu.cn

codes are not strictly MDS codes. As nL is the minimum
number of coded bits to be generated by an [n, k] MDS code,
the total number of coded bits generated by an [n, k] shift-
XOR code minus nL is called the storage overhead. For any
k ≤ n, [n, k] shift-XOR codes with the refined increasing
difference (RID) generator matrices have been studied [10]–
[12], [17], where the storage overhead of the systematic
version is at least (n−k)(n−k−1)(k−1)

2 bits (to be proved in
this paper). For n ≤ 2k, systematic [n, k] shift-XOR codes
can be constructed using a circulant generator matrix [15] with
storage overhead of (n−k)k(k−1)

2 bits for k ≥ 4 and (n − k)
bits for k = 2, 3.

In this paper, we propose a class of generator matrices for
shift-XOR codes, called two-tone matrices, that includes RID
generator matrices as special cases and achieves lower storage
overheads. In a RID generator matrix [12], the numbers of
bit shift specified in each row are increasing. In a two-tone
generator matrix, the numbers of bit shift specified in each
row can be both increasing and decreasing. For decoding, we
generalize the shift-XOR elimination to handle both the in-
creasing and decreasing order of the numbers of bit shift of the
message sequences. Our algorithm preserves the advantages of
the shift-XOR elimination, including in-place and bandwidth-
overhead free.

We further prove that for two-tone shift-XOR codes, the
reflected Vandermonde matrices achieve the smallest storage
overhead; and for RID shift-XOR codes, the Vandermonde ma-
trices achieve the smallest storage overhead. Compared with
the Vandermonde RID generator matrices, the corresponding
two-tone generator matrices can reduce up to half of the
storage overheads. Moreover, based on two-tone matrices, we
propose systematic shift-XOR storage codes that can further
reduce the storage overheads to less than 10% of that of
the non-systematic codes for some practical parameters. The
minimum storage overhead of systematic [n, k] two-tone codes
is ((n−k)2−1)(k−1)

4 when n− k is odd and (n−k)2(k−1)
4 when

n− k is even.

Compared with a storage system using RS codes, one using
two-tone codes may gain higher encoding/decoding throughput
with the price of a slightly higher storage cost. We implement
two-tone codes using C++ and compare the encoding/decoding
throughput with the state-of-the-art implementations of RS
codes and Cauchy RS codes. Our codes achieve from 50 to 100
percent higher encoding/decoding throughput than ISA-L [18],
which is considered the state-of-the-art RS encoding/decoding
library. Compared with Cauchy-RS codes implemented in the
Longhair library [19], our codes can achieve 80 percent higher



encoding/decoding throughputs for small file size (128KB) and
from 5 to 8 times the encoding/decoding throughputs for large
file size (512MB). Compared with the RS codes implemented
in Jerasure library [20], our codes can achieve 10 times the
encoding/decoding throughputs.

II. SHIFT-XOR CODES WITH TWO-TONE GENERATOR
MATRICES

We denote a range of integers from i to j by i : j. When
i > j, i : j is the empty set. For a binary sequence a, denoted
by bold lowercase letters, the i-th entry is denoted by a[i].
The subsequence of a from the i-th entry to the j-th entry is
denoted by a[i : j]. For a sequence a of length L, we use the
convention that a[l] = 0 for l < 1 or l > L.

For a sequence a of L bits and a natural number t ≥ 0, the
shift operator zt pads t zeros in front of a, so that the (l+t)-th
entry of zta is equal to the l-th of a, i.e., for l = 1, . . . , L+ t,(

zta
)

[l] = a [l − t] .

Let a1 and a2 be two sequences of length L1 and L2,
respectively. Their addition a1 + a2 is bit-wise exclusive-or
(XOR). If these two sequences are not of the same length,
zeros are appended after the shorter one before the addition so
that for l = 1, . . . ,max{L1, L2}, (a1 + a2) [l] = a1 [l]⊕a2 [l].

A. Shift-XOR Codes

Consider k binary message sequences, each of L bits, where
the j-th sequence is denoted as xj . The generator matrix used
to encode the message sequences is an n × k matrix Ψ =
(zti,j ), where ti,j ≥ 0 determines the number of bit shifts of
the j-th message sequence in the i-th coded sequence yi. We
use the convention that z∞ = 0, and ti,j =∞ means that xj

is not involved in the encoding of yi. So,

yi =

k∑
j=1

zti,jxj , ∀ 1 ≤ i ≤ n.

Denote by t∗i the maximum finite value among ti,1, . . . , ti,k.
The length of yi is L + t∗i . Denote the vectors Y =
(y1,y2, . . . ,yn)> and X = (x1,x2, . . . ,xk)>. The encoding
can be written as

Y = ΨX, (1)

which is also called an n× k shift-XOR system.
Existing works have studied the generator matrices satis-

fying the refined increasing difference (RID) properties [10],
[12], [17], for which an efficient decoding algorithm exists.
Here we introduce a more general class of generator matrices,
called two-tone matrices.

Definition 1 (Two-tone Matrix). An n×k matrix Ψ = (zti,j )
is said to be two-tone if for certain integer 0 ≤ d ≤ n the
following conditions hold:

1) for any 1 ≤ i1 < i2 ≤ n, 1 ≤ j1 < j2 ≤ k, ti1,j2 −
ti1,j1 < ti2,j2 − ti2,j1 ;

2) for any 1 ≤ i ≤ d, 1 ≤ j1 < j2 ≤ k, ti,j2 − ti,j1 ≤ 0;
3) for any d < i ≤ n, 1 ≤ j1 < j2 ≤ k, ti,j2 − ti,j1 > 0.

Here d is called the divide of Ψ.

By condition 2) of the definition, if ti,j2 − ti,j1 = 0 for
certain j1 < j2, then i = d. In other words, only the divide
row can have zero differences. It is easy to verify that any
submatrix of a two-tone matrix is still a two-tone matrix.
The RID matrices are special cases of two-tone matrices with
divide d = 0, 1.

B. Examples of Decoding Algorithms

We first use examples to illustrate how to solve two-tone
shift-XOR systems. As our algorithm is based on the shift-
XOR elimination, which was proposed for RID systems [17],
we first use an example to explain how does it work.

Example 1. Consider the 2× 2 shift-XOR system[
y1

y2

]
=

[
1 z
1 z2

] [
x1

x2

]
. (2)

As the generator matrix is RID, the shift-XOR elimination can
be applied to solve the system using subsequences of y1,y2:

x̂1 = y2[1 : L],

x̂2 = y1[2 : L + 1].

Expanding the shift operator, we get for 1 ≤ l ≤ L,

x̂1[l] = x1[l] + x2[l − 2],

x̂2[l] = x2[l] + x1[l + 1].

The system is solved by multiple iterations. An iteration index
` is initialized as 1, and is increased by 1 after each iteration.
The following processes are done in each iteration: When ` =
1, x1[1] = x̂1[1] is solved. For each iteration ` = 2, 3, . . . , L+
1, x1[`] and x2[`− 1] are solved sequentially by equations

x1[`] = x̂1[`] + x2[`− 2],

x2[`− 1] = x̂2[`− 1] + x1[`],

respectively, where we can check inductively that all the
message bits used on the RHS have been solved previously.

Example 2. The 3× 3 systemy1

y2

y3

 =

z4 z2 1
z2 z 1
1 1 1

x1

x2

x3

 (3)

does not have a RID generator matrix, but it is equivalent to
one with a RID generator matrix:y3

y2

y1

 =

1 1 1
1 z z2

1 z2 z4

x3

x2

x1

 .

Therefore, system (3) can also be solved by the shift-XOR
elimination.

In general, for a k × k two-tone matrix with divide k, by
reversing the order of rows and columns, we obtain a two-tone
matrix with divide 1, i.e., an RID matrix.



Example 3. Next, we consider a more general example:
y1

y2

y3

y4

y5

 =


z8 z6 z4 z2 1
z4 z3 z2 z 1
1 1 1 1 1
1 z z2 z3 z4

1 z2 z4 z6 z8




x1

x2

x3

x4

x5

 ,

where the generator matrix has divide 3. The system can be
further written as two systems of the same set of variables:y1

y2

y3

 =

z4 z2 1
z2 z 1
1 1 1

x3

x4

x5

+

z8 z6

z4 z3

1 1

[x1

x2

]
, (4)

[
y4

y5

]
=

[
1 z
1 z2

] [
x1

x2

]
+

[
z2 z3 z4

z4 z6 z8

]x3

x4

x5

 . (5)

We observe that without the second term on the RHS, both
systems above can be solved by the shift-XOR elimination
(ref. (2) and (3)). The second term in each system can be
regarded as the interference from other one. Our idea is to
solve (4) and (5) using two individual shift-XOR eliminations,
together with interference cancellation between each other.

Same as the shift-XOR elimination, we define subsequences

x̂1 = y5[1 : L], x̂3 = y3[1 : L],

x̂2 = y4[2 : L + 1], x̂4 = y2[2 : L + 1],

x̂5 = y1[1 : L],

where x̂1, x̂2 are used by solving (5), and x̂3, x̂4, x̂5 are used
by solving (4). Expanding the shift operator, we further have
for 1 ≤ l ≤ L,

x̂1[l] = x1[l] + x2[l − 2] + x3[l − 4] + x4[l − 6] + x5[l − 8],

x̂2[l] = x2[l] + x1[l + 1] + x3[l − 1] + x4[l − 2] + x5[l − 3],

x̂3[l] = x3[l] + x4[l] + x5[l] + x1[l] + x2[l],

x̂4[l] = x4[l] + x3[l − 1] + x5[l + 1] + x1[l − 3] + x2[l − 2],

x̂5[l] = x5[l] + x3[l − 4] + x4[l − 2] + x1[l − 8] + x2[l − 6].

We use `+ and `− as the iteration indices of system (5) and
(4), respectively. In the first iteration of both systems, we see
that some bits can be solved directly:
• For (5), we solve x1[1] = x̂1[1].
• For (4), we solve x5[1] = x̂5[1].

Now, `+ = `− = 2. The following operations are performed
for each following iteration assuming x1[1 : `+ − 1], x2[1 :
`+ − 2], x3[1 : `− − 2], x4[1 : `− − 2] and x5[1 : `− − 1] are
already solved:
• (System (5)) Solve x1[`+] and x2[`+ − 1] sequentially

using x̂1 and x̂2, respectively, where the interference from
x3[`+−4], x3[`+−2], x4[`+−6], x4[`+−3], x5[`+−8]
and x5[`+ − 4] can be cancelled as these bits are solved
previously.

• (System (4)) Solve x5[`−], x4[`− − 1], x3[`− − 1] se-
quentially using x̂5, x̂4, x̂3, respectively, where the inter-
ference from x1[l−−8], x1[l−−8], x1[l−−1], x2[l−−6],

x2[l− − 3] and x2[l− − 1] can be cancelled as they are
solved previously.

• Increase the iteration indices `+ and `− by 1.

C. Two-tone Elimination

Now we consider the k× k system of shift-XOR equations[
y1 y2 · · · yk

]>
= Ψ

[
x1 x2 · · · xk

]>
, (6)

where Ψ = (zti,j ) is a two-tone matrix with divide d. We
give an algorithm to solve the above general system when
y1, . . . ,yk are given. Our algorithm generalizes the shift-XOR
elimination in [17], and is called two-tone elimination.

The system (6) can be written as two sub-systems:[
y1 y2 · · · yd

]>
= Ψ−

[
x1 · · · xk

]>
, (6−)[

yd+1 yd+2 · · · yk

]>
= Ψ+

[
x1 · · · xk

]>
. (6+)

Define for u = 1, 2, . . . , k the subsequence

x̂u = yk+1−u[(tk+1−u,u + 1) : (tk+1−u,u + L)].

Substituting into (6) and expanding the shift operator, we have

x̂u[l] = xu[l] +
∑
j 6=u

xj [l − tk+1−u,j + tk+1−u,u],

where we see that x̂u, u = 1, . . . , k involve all the bits we
want to decode.

These two sub-systems are solved by two modified shift-
XOR elimination interactively, where xk−d+1, . . . ,xk are vari-
ables for (6−), and x1, . . . ,xk−d are variables for (6+). The
two sub-systems are solved by multiple iterations. We use
`+ and `− as the iteration indices of system (6+) and (6−),
respectively. Initially, `+ = `− = 1. After each iteration in
each sub-system, the corresponding index is increased by 1.
The operations of each iteration depend on the value of `+

and `−. We define the following parameters that can help us
to separate iterations into segments:

T+
i = tk−i,i+1 − tk−i,i, 1 ≤ i < k − d,

T−i = ti+1,i − ti+1,i+1, 1 ≤ i < d.

Define T+
i:j =

∑j
l=i T

+
l and T−i:j =

∑j
l=i T

−
l .

For a number of iterations at the beginning, both sub-
systems can be solved separately with the following operations
respectively for each iteration:
• For b = 1, 2, . . . , k − d − 1, for each iteration `+ in

T+
1:b−1 +(1 : T+

b ), solve xu[`+−T+
1:u−1] sequentially for

u = 1, 2, . . . , b.
• For b = 1, 2, . . . , d− 1, for each iteration `− in T−1:b−1 +

(1 : T−b ), solve xk−u+1[`− − T−1:u−1] sequentially for
u = 1, 2, . . . , b.

In the above process, solving one bit implies that it is back
substituted into the subsequences it involves in. After the
above iterations, `+ = T+

1:k−d−1 + 1 and `− = T−1:d−1 + 1.
Then the following operations are performed sequentially for
each iteration:



• Solve xu[`+ − T+
1:u−1] sequentially using x̂u and previ-

ously solved bits, for u = 1, 2, . . . , k − d.
• Solve xk−u+1[`− − T−1:u−1] sequentially using x̂k−u+1

and previously solved bits, u = 1, 2, . . . , d.
The algorithm stops after all the bits are solved.

Same as the shift-XOR elimination, we can show that the
two-tone elimination can be implemented in-place, i.e., no
auxiliary space is required to store the intermediate shift-XOR
results. Similar to the analysis of shift-XOR elimination, the
two-tone elimination needs less than k(k−1) XOR operations
and O(k2L) integer operations. The correctness of the two-
tone elimination can be guaranteed by the following Theorem.

Theorem 1. Consider a k× k system of shift-XOR equations
(y1 · · · yk)> = Ψ(x1 · · · xk)> with Ψ being a two-tone
matrix. The two-tone elimination can successfully decode xu,
u = 1, . . . , k using

x̂u = yk+1−u[(tk−u+1,u + 1) : (tk−u+1,u + L)].

Theorem 1 can be verified by expressing each bit to decode
using x̂u, u = 1, 2, . . . , k and the previously decoded bits.

III. TWO-TONE STORAGE CODES

Now we consider a storage system of n storage nodes
employing an [n, k] shift-XOR code as defined in (1). The n
coded sequences are stored at n distinct storage nodes. Using
two-tone matrices, both systematic and non-systematic codes
can be constructed.

A. Non-systematic Storage Code

We first consider that the generator matrix Ψ is a two-tone
generator matrix. We show that the file can be decoded from
any k out of the n storage nodes.

Assume that the decoder has access to k nodes with the
indices in descending order, i.e., i1 > i2 > · · · > ik. As any
submatrix of a two-tone generator matrix is also a two-tone
matrix, the k coded sequences that can be accessed by the
decoder form a k × k two-tone shift-XOR system, which can
be solved using the two-tone elimination.

Our decoding scheme consists of two stages: the trans-
mission stage and the decoding stage. In the transmission
stage, node iu transmits yiu with the range of [(tiu,u + 1) :
(tiu,u + L)] to the decoder and stores in x̂u, u = 1, 2, . . . , k,
i.e., x̂u = yiu [(tiu,u+1) : (tiu,u+L)]. As each node transmits
exactly L bits to the decoder, the decoding scheme has no
bandwidth overhead. In the decoding stage, the decoder applies
the two-tone elimination on x̂u, u = 1, 2 . . . , k. Then x̂u can
be decoded into xu in-place.

B. Systematic Two-tone Code

An [n, k] systematic two-tone code has the generator matrix

Ψ =

[
I
Φ

]
, (7)

where I is the k×k identity matrix and Φ is an (n−k)×k two-
tone matrix. Note that the first k coded sequences are identical
to the message sequences, i.e., yi = xi for i = 1, 2, . . . , k,

and are also called systematic sequences. The remaining n−k
coded sequences are called parity sequences.

Let us discuss the decoding algorithm of a storage system
employing an [n, k] systematic shift-XOR code. Assume that
the decoder has access to k nodes with the indices in descend-
ing order i1 > i2 > · · · > ik. The k nodes have km systematic
sequences and k − km parity sequences. As the systematic
sequences have smaller indices than the parity sequences, node
iu, k − km + 1 ≤ u ≤ k stores the message sequence xiu .
Denote the indices of the remaining k−km message sequence
to decode as 1 ≤ h1 < h2 < · · · < hk−km

≤ k.
The decoding scheme consists of two stages: the transmis-

sion stage and the decoding stage. In the transmission stage:
first, the decoder retrieves xiu from node iu for k−km < u ≤
k; second, the decoder retrieves x̂v = yiv [tiv,hv

+ (1 : L)]
from node iv for 1 ≤ v ≤ k−km. In the decoding stage, xiu ,
k−km < u ≤ k are first substituted into x̂v , 1 ≤ v ≤ k−km.
After the substitution, x̂v , 1 ≤ v ≤ k − km form a two-
tone system. Then the two-tone elimination is executed on
x̂v , 1 ≤ v ≤ k − km to decode xhv

for 1 ≤ v ≤ k − km.
For decoding the systematic code, the substitution costs

no more than (k − km)kmL XOR operations and the two-
tone elimination on k − km sequences costs no more than
(k − km)(k − km − 1)L XOR operations. As a consequence,
the number of XOR costs is at most (k − km)kmL + (k −
km)(k − km − 1)L = (k − km)(k − 1)L. Similar to the two-
tone elimination, decoding the systematic code costs O(k2L)
integer operations. As the substitution and two-tone elimina-
tion are in-place, decoding the systematic two-tone code is
in-place implementable.

C. Storage Overhead Optimized Generator Matrices
Consider a storage system of n storage nodes employing

shift-XOR codes described in the previous section. Due to the
shift operation, each storage node may store more than L bits,
the length of a message sequence. Each coded sequence yi has
L+maxk

j=1 ti,j bits, and hence the total number of bits stored
at n codes is nL +

∑n
i=1 maxk

j=1 ti,j . The storage overhead
of the shift-XOR codes with generator matrix Ψ = (zti,j ) is
defined as

S(Ψ) =

n∑
i=1

k
max
j=1

ti,j . (8)

In this section, we give specific constructions of two-tone
matrices to minimize the storage overhead.

We define a special class of two-tone matrices that gener-
alize the Vandermonde matrices.

Definition 2 (Two-tone and Reflected Vandermonde Matrices).
The n × k two-tone Vandermonde matrix Ψ = (zti,j ) with
divide d is defined as

ti,j =

{
(d− i)(k − j), 1 ≤ i ≤ d,

(i− d)(j − 1), d < i ≤ n.
(9)

Further, Ψ is called a reflected Vandermonde matrix if

d =

{
n+1
2 , n is odd,

n
2 + 1 or n

2 , n is even.



TABLE I
STORAGE OVERHEAD COMPARISON OF DIFFERENT SHIFT-XOR CODES.

IN THE TABLE, THE GENERATORS ARE THE ONES AS SPECIFIED IN
THEOREM 2 AND 3, COROLLARY 1 AND 2.

Codes [8, 6] [11, 8] [14, 10]

RID code [12], [17] 140 385 819
two-tone code 80 210 441

systematic incre. diff. code [11] 15 42 90
systematic two-tone code 5 14 36

It is easy to check that the generator matrix defined by (9)
is a two-tone matrix. When d = 0, 1, a two-tone Vandermonde
matrix is also called a Vandermonde matrix. The reflected
Vandermonde matrix can achieve minimal storage overhead
among all two-tone ones of the same size, as shown in the
next theorem.

Theorem 2. The storage overhead of an [n, k] shift-XOR
code with two-tone generator matrix is lower bounded by
(n2−1)(k−1)

4 when n is odd, and n2(k−1)
4 when n is even, and

the lower bound is achieved if and only if the generator matrix
is the reflected Vandermonde matrix.

Similar to Theorem 2, we have the following result about
the storage overhead of systematic two-tone shift-XOR codes.

Corollary 1. The storage overhead of an [n, k] shift-XOR

code with systematic two-tone generator matrix Ψ =

[
I
Φ

]
is lower bounded by ((n−k)2−1)(k−1)

4 when n − k is odd,
and (n−k)2(k−1)

4 when n− k is even, and the lower bound is
achieved if and only if Φ is the reflected Vandermonde matrix.

By contrast, the Vandermonde matrices (two-tone matrices)
can achieve smallest storage overhead among all RID ones.

Theorem 3. The storage overhead of an [n, k] shift-XOR code
with RID generator matrix is lower bounded by (n(n−1))(k−1)

2
and the lower bound is achieved if and only if the generator
matrix is the Vandermonde matrix (two-tone matrices with
divide 0).

Corollary 2. The storage overhead of an [n, k] shift-XOR

code with systematic RID generator matrix Ψ =

[
I
Φ

]
is

lower bounded by ((n−k)(n−k−1))(k−1)
2 and the lower bound is

achieved if and only if Φ is the Vandermonde matrix (two-tone
matrices with divide 0).

Systematic codes have the advantage of smaller storage
overheads compared with the corresponding non-systematic
codes. The storage overheads of different shift-XOR codes,
including non-systematic and systematic versions, with some
typical parameters [n, k] are shown in Table I. From the table,
we see that the storage overheads of systematic codes are less
than 10% of that of the corresponding non-systematic codes.
Moreover, two-tones systematic codes have about 1/3 storage
overheads of that of previous systematic codes.

TABLE II
COMPARISON OF ENCODING/DECODING THROUGHPUT FOR [11, 8] CODES

IN MEGABYTES PER SECOND.

(a) COMPARISON OF ENCODING THROUGHPUT

File Size Two-tone ISA-L Jerasure Longhair

128 KB 11,823 7,381 1,078 4,106
512 KB 12,256 7,628 1,272 4,097
1 MB 12,702 6,843 1,154 3,613
32 MB 12,086 6,436 773 2,283
64 MB 8,602 5,293 680 1,523
128 MB 7,952 5,177 659 1,455
256 MB 7,926 5,059 660 1,193
512 MB 7,888 4,992 592 1,110

(b) COMPARISON OF DECODING THROUGHPUT

File Size Two-tone ISA-L Jerasure Longhair

128 KB 8,021 5,205 783 3,368
512 KB 7,442 5,773 837 2,953
1 MB 7,474 4,762 840 2,519
32 MB 7,145 3,477 564 1,149
64 MB 5,898 3,089 467 859
128 MB 4,542 2,919 437 827
256 MB 4,531 2,730 476 710
512 MB 4,522 2,556 387 650

IV. IMPLEMENTATION AND PERFORMANCE ANALYSIS

Compared with a storage system using RS codes, one using
two-tone codes may gain higher encoding/decoding throughput
with the price of a slightly higher storage cost. In this section,
we implement the two-tone shift-XOR codes and demonstrate
the superior encoding/decoding throughputs compared with
the state-of-the-art implementation of RS codes and Cauchy
RS codes.

For storage codes employed by commercial distributed
storage systems [4], [5], [21], n is commonly set to 1.33k to
2k. Here we choose the parameter [11, 8] to meet the settings
in the real scenarios. We implement the two-tone codes and
other libraries for comparison on an Intel Xeon CPU E5-2699
v4 at 2.2GHz. Our experiment evaluates the performance on
7 different file sizes from 128KB to 512MB. The comparison
of encoding and decoding throughputs with existent coding
libraries is shown in Table II.

From Table II, we observe that the two-tone code imple-
mentation outperforms all the other coding libraries in both
encoding and decoding throughputs. The two-tone code imple-
mentation achieves from 50% to 100% more throughputs than
the state-of-the-art coding library ISA-L for both encoding
and decoding performance. Compared with Cauchy-RS codes
implemented in the Longhair library, our codes can achieve
130% more encoding/decoding throughputs for small file size
(128KB) and 5 ∼ 8 times the encoding/decoding throughputs
for large file size (512MB). Compared with the RS codes
implemented in Jerasure library, our codes can achieve 10
times the encoding/decoding throughput.

We observe that the throughputs drop significantly when the
file size increases from 32MB to 64MB. This is because the
size of cache in the experiment system is around 60MB.



REFERENCES

[1] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,”
Journal of the Society for Industrial and Applied Mathematics, vol. 8,
pp. 300–304, Jun. 1960.

[2] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zucker-
man, “An XOR-based erasure-resilient coding scheme,” IGSI Technical
Report No. TR-95-048, 1995.

[3] A. Fikes, “Storage architecture and challenges,” Talk at the Google
Faculty Summit, vol. 535, 2010.

[4] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V. Truong, L. Bar-
roso, C. Grimes, and S. Quinlan, “Availability in globally distributed
storage systems,” in 9th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver,
BC, Canada, Proceedings, R. H. Arpaci-Dusseau and B. Chen, Eds.
USENIX Association, 2010, pp. 61–74.

[5] D. Borthakur, R. Schmidt, R. Vadali, S. Chen, and P. Kling, “HDFS
RAID,” in Hadoop User Group Meeting, 2010.

[6] M. Blaum and R. M. Roth, “New array codes for multiple phased burst
correction,” IEEE Trans. Information Theory, vol. 39, no. 1, pp. 66–77,
1993.

[7] M. Xiao, M. Médard, and T. Aulin, “A binary coding approach for com-
bination networks and general erasure networks,” in IEEE International
Symposium on Information Theory, ISIT 2007, Nice, France, June 24-29,
2007. IEEE, 2007, pp. 786–790.

[8] M. Xiao, T. Aulin, and M. Médard, “Systematic binary deterministic
rateless codes,” in 2008 IEEE International Symposium on Information
Theory, ISIT 2008, Toronto, ON, Canada, July 6-11, 2008, F. R.
Kschischang and E. Yang, Eds. IEEE, 2008, pp. 2066–2070.

[9] W. Shum and H. Hou, “Network coding based on byte-wise circular
shift and integer addition,” in 2020 IEEE International Symposium on
Information Theory (ISIT). IEEE, 2020, pp. 1641–1645.

[10] C. Sung and X. Gong, “A ZigZag-decodable code with the MDS
property for distributed storage systems,” in IEEE Int. Symp. Inf. Theory,
Jul. 2013, pp. 341–345.

[11] X. Fu, Z. Xiao, and S. Yang, “Overhead-free in-place recovery scheme
for XOR-based storage codes,” in IEEE Int. Conf. Trust, Security and
Privacy in Computing and Communications, Sep. 2014, pp. 552–557.

[12] ——, “Overhead-free in-place recovery and repair schemes of XOR-
based regenerating codes,” in IEEE Int. Symp. Inf. Theory, Jul. 2015,
pp. 341–345.

[13] M. Dai, X. Wang, H. Wang, X. Lin, and B. Chen, “Bandwidth overhead-
free data reconstruction scheme for distributed storage code with low
decoding complexity,” IEEE Access, vol. 5, pp. 6824–6832, 2017.

[14] X. Gong and C. W. Sung, “Zigzag decodable codes: Linear-time erasure
codes with applications to data storage,” J. Comput. Syst. Sci., vol. 89,
pp. 190–208, 2017.

[15] M. Dai, C. W. Sung, H. Wang, X. Gong, and Z. Lu, “A new Zigzag-
decodable code with efficient repair in wireless distributed storage,”
IEEE Trans. Mob. Comput., vol. 16, no. 5, pp. 1218–1230, 2017.

[16] M. Dai, B. Mao, X. Gong, C. W. Sung, W. Zhuang, and X. Lin,
“Zigzag-division multiple access for wireless networks with long and
heterogeneous delays,” IEEE Trans. Aerosp. Electron. Syst., vol. 55,
no. 6, pp. 2822–2835, 2019.

[17] X. Fu, S. Yang, and Z. Xiao, “Decoding and repair schemes for shift-
xor regenerating codes,” IEEE Trans. Inf. Theory, vol. 66, no. 12, pp.
7371–7386, 2020.

[18] Intel, “Intel(R) Intelligent Storage Acceleration Library,” 2020. [Online].
Available: https://github.com/intel/isa-l

[19] C. A. Taylor, “Longhair: Fast Cauchy Reed-Solomon Erasure Codes in
C,” 2018. [Online]. Available: https://github.com/catid/longhair

[20] J. S. Plank, S. Simmerman, and C. D. Schuman, “Jerasure: A library in
c/c++ facilitating erasure coding for storage applications-version 1.2,”
University of Tennessee, Tech. Rep. CS-08-627, vol. 23, 2008.

[21] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in windows azure storage,” in 2012
USENIX Annual Technical Conference, Boston, MA, USA, June 13-15,
2012, G. Heiser and W. C. Hsieh, Eds. USENIX Association, 2012,
pp. 15–26.


