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Overview

@ Motivation: Coding theory — Shift-XOR coding

@ Low complexity: only (non-cyclic) shift and XOR operations involved
@ Applications:

Storage codes: Sung & Gong '13, Fu et al. '14, Dai et al. '17
Regenerating codes: Hou et al. '13, Fu et al. '15

Fountain codes: Nozaki '14, Jun et al. '17

Network codes: Sung & Gong '14
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Toy example: storage coding
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A storage system with 4 storage nodes that can tolerate one node failure.
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Toy example: shift-XOR coding
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Toy example: shift-XOR coding
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Toy example: shift-XOR coding

X2

yi=xi+zxo+2%3=[1 z 22]-[x1 x X3}T
where z! is the shift operator, defined as

s[¢ —t], ¢ > max{t,0},

0, otherwise.

(z's)l] = {

e t < 0: discard/truncate the first (—t) symbols

@ t = 0o: X; does not involve in the forming of y;
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Shift-add system

@ Model data symbols as elements of a finite abelian group (A, +).
A sequence s is a mapping Z — A satisfying s[i] = 0 for i < 0.
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o Consider a shift-add system with n sequences {x;}?_; as input and m
sequences {y;}; as output.

@ The output sequences are obtained by

n

j: ai;
Yi = Z ij

j=1

where the addition is performed in the additive group A, and the shift
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Shift-add system

@ Model data symbols as elements of a finite abelian group (A, +).
A sequence s is a mapping Z — A satisfying s[i] = 0 for i < 0.

o Consider a shift-add system with n sequences {x;}?_; as input and m
sequences {y;}; as output.

@ The output sequences are obtained by

n

j: ai
Yi: Z ij

Jj=1

where the addition is performed in the additive group A, and the shift
operator zt is defined as in the last slide:

(Z's)[1] = s[¢ —t], ¢> max{t,0},
0, otherwise.

@ The matrices ® = (z%) and A = (aj;) are both called shift matrices.
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Infinite linear system

@ Motivation: extend the definition in order to develop a general notion
of solvability.
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Infinite linear system

@ Motivation: extend the definition in order to develop a general notion

of solvability.

@ An infinite linear system takes sequence v as input and outputs

sequence u, with

ulj] =) vlil, VjeNo

ick;
where Ng = {n € Z,n > 0}, and E; C Ny is some finite index set for
each j € Np.
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Infinite linear system: example

Example 1 (Shift-add system is an infinite linear system).

@ Recall a shift-add system takes the form

n

yi = Zz"”’ij or yil{] = ij[ﬁ —aj] = Z x;[¢ — ajj]
j=1

Jj=1 J€[n], £>aj
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Infinite linear system: example

Example 1 (Shift-add system is an infinite linear system).
@ Recall a shift-add system takes the form
yi = Zza"ij or yil{] = ij[ﬁ —aj] = Z x;[¢ — ajj]
j=1 Jj=1 JE[n], £>aj;

@ Rearrange the entries in the input sequences x; (resp. output
sequences y;) into a single sequence v (resp. u)., given by

v[nl + j — 1] = x;[], ulml + i — 1] = y;[/]

@ Then the shift-add system can be rewritten in the notation of an

infinite linear system as

u[mé + i =11 = > " V[k], Emeyica =Non | J{n(¢ - a;)+j—1}

k€Emeti—1 i=1
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Solvability of an infinite linear system

@ Analytic viewpoint: an infinite linear system is solvable if the mapping
vV — u is injective.
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Solvability of an infinite linear system

@ Analytic viewpoint: an infinite linear system is solvable if the mapping
vV — u is injective.

@ Algorithmic viewpoint: a notion of solvability that ensures an efficient
solving algorithm.

Definition 1 (Zigzag solvable).

An infinite linear system is zigzag solvable if there exists two functions
f,g : Ng — Np such that

@ 1 is bijective;
Q@ {f(i)} C Esy C Ujo{f(i)}, for all i € No.
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Zigzag solvability: intuition

@ Zigzag solvability ensures a solving algorithm called zigzag decoding.

@ In each of the i-th stage (i € Np), we use a symbol in sequence u to
solve for a symbol in sequence v.

e f(i) indicates the index of the symbol in v solved in the i-th stage.

@ g(i) indicates the index of the symbol in u used in the i-th stage.
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Zigzag solvability: intuition

@ Zigzag solvability ensures a solving algorithm called zigzag decoding.

@ In each of the i-th stage (i € Np), we use a symbol in sequence u to
solve for a symbol in sequence v.

e f(i) indicates the index of the symbol in v solved in the i-th stage.

@ g(i) indicates the index of the symbol in u used in the i-th stage.

@ Condition 1 guarantees that every symbol in v is solved exactly once.

o Condition 2 guarantees that the substitution algorithm can proceed,
i.e., u[g(i)] can be written as the sum of v[f(i)] and input symbols
that are solved prior to the i-th stage.
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Successive solvability

@ Motivation: determining f and g is generally hard.

@ Aim: develop a stronger notion of solvability that puts some
constraints on f and g.
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Successive solvability

@ Motivation: determining f and g is generally hard.

@ Aim: develop a stronger notion of solvability that puts some
constraints on f and g.

@ Focus on shift-add systems.

@ Abusing notation: use (j,¢) in place of (nf 4+ j — 1) for the index of
xj[¢] in v, and (i, £) in place of (ml + i — 1) for the index of y;[¢] in u.

Definition 2 (Successively solvable).
A shift-add system is successively solvable if it is zigzag solvable with
functions f, g, and satisfies an additional condition:

Q 1(,0) < f1(j, V) whenever 0 < £ < ¢/, forall 1 < j < n.
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Successive solvability: intuition

@ Successive solvability guarantees that the symbols of each variable
sequence are solved successively from left to right.

@ This adds regularity to the solving algorithm, as in each stage, the
function f takes value in the index of the first unsolved symbol of
each variable sequence.
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Successive solvability: intuition

@ Successive solvability guarantees that the symbols of each variable
sequence are solved successively from left to right.

@ This adds regularity to the solving algorithm, as in each stage, the
function f takes value in the index of the first unsolved symbol of
each variable sequence.

o For shift-add systems, zigzag solvable does NOT implies successively
solvable.
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Zigzag solvability and successive solvability

Example 2 (Zigzag solvable % successively solvable).

@ Consider the shift-add system with shift matrix

0 0 o~
A=] 00 -1 o©
-1 0 1

@ The system is zigzag solvable but not successively solvable.

@ In the O-th stage, can only decode x[¢] for some ¢ > 1.
e f71(2,0) > f=1(2,¢), violating successive solvability.
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Zigzag solvability and successive solvability

Example 2 (Zigzag solvable % successively solvable).
@ Consider the shift-add system with shift matrix

0 0 o~
A=] 00 -1 o©
-1 0 1

@ The system is zigzag solvable but not successively solvable.
@ In the O-th stage, can only decode x3[¢] for some ¢ > 1.

e f71(2,0) > f=1(2,¢), violating successive solvability.

Proposition 1.

For a shift-add system corresponding to a non-negative shift matrix, it is

zigzag solvable if and only if it is successively solvable.
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Reduction of shift-add systems

@ Focus on shift-add systems with square shift matrices.
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@ Suppose there exists 7, j such that a; = 0 and aj > 0 for all kK # J.
We have y;[0] = x;[0]. Let f(0) = (j,0), g(0) = (/,0).

13/20



Reduction of shift-add systems

@ Focus on shift-add systems with square shift matrices.

o Consider the 0-th stage of a zigzag decoding algorithm.

@ Suppose there exists 7, j such that a; = 0 and aj > 0 for all kK # J.
We have y;[0] = x;[0]. Let f(0) = (j,0), g(0) = (/,0).

A decoding stage can be seen as a reduction of a shift-add system.

o Let x; = z71xj, e, x;[t] = x;[t + 1] for t > 0.

Let y: = z7ty;, i.e., yi[t] = yi[t + 1] for t > 0.
o For 1 < k<n, k#i, lety) be such that

t] — x;[0], if t = ay;,
y’k[t]—{”[] xi(0, i W for t> 0.

Yi[t], otherwise,
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Reduction: example

y1

yo

Y3 |

Shift matrix; A =

= O O

o = O

= = O

X1
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Reduction: example

X1
y1 X2
X3
D X1
y2 X2
X3
I | X
y3 [ [ X2
I | X3

Shift matrix: A=

= O O
o = O
= = O
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Reduction: example

X1
y/1 X2
X3
X
'
Yo X2
X3
| | x
Y3 | [ X2
| | X3

Shift matrix;: A’ =

N O =
O O O
= O O
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Definitions on shift matrix

Definition 3 (Pivot, reductive).

Given a shift matrix A, the (i, j)-th entry is called a pivot if (i) a; > 0,

and (ii) ajj < ajk for all k # j. We say that a shift matrix A is reductive if
A contains a pivot.
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Definitions on shift matrix

Definition 3 (Pivot, reductive).

Given a shift matrix A, the (i, j)-th entry is called a pivot if (i) a; > 0,
and (ii) ajj < ajk for all k # j. We say that a shift matrix A is reductive if
A contains a pivot.

Definition 4 (Equivalent).

Denote the j-th row of matrix A by a; and the all-one row vector by 1.
Two shift matrices A and B are equivalent, or A~ B, ifa; —b; =¢; -1,
where ¢; = 0 whenever Jj s.t. a;; <0 or b; <0.

Definition 5 (Reducing operator).

The (i, j)-th reducing operator Rj; is defined by (Rjj)ke = dj¢ — i k, where
d... is the Kronecker's delta function.

v
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Graphical construction: Intuition

@ Successive zigzag decoding algorithm < Infinite sequence of reducing
operators
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Graphical construction: Intuition

@ Successive zigzag decoding algorithm < Infinite sequence of reducing
operators

@ Hypothesis: recurrent pattern in the infinite sequence

@ Graphical characterization: intuition

> Shift matrix <> vertex

» Reducing operator <> edge

» Sequence of operators < infinite walk
» Recurrent pattern <> walk on cycle

Lemma 2.

Suppose the (i, j)-th entry of an n x n shift matrix A is a pivot. If A" ~ A,
then the (i,j)-th entry is a pivot of A, and (Rjj + A) ~ (R + A').
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Definitions on G,

Definition 6 (G,).

For a fixed positive integer n, we define a directed (multi)graph G, whose
vertices are equivalence classes of shift matrices with finite entries. Given
two shift matrices A and B with finite entries, there is a directed edge from

(A} to {B} (written {A} *4 {B}) if A has a pivot (i,j) and R; + A ~ B.
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Definitions on G,

Definition 6 (G,).

For a fixed positive integer n, we define a directed (multi)graph G, whose
vertices are equivalence classes of shift matrices with finite entries. Given
two shift matrices A and B with finite entries, there is a directed edge from

(A} to {B} (written {A} *4 {B}) if A has a pivot (i,j) and R; + A ~ B.

v

Definition 7 (Path, cycle).
For positive integer L, we define a path of length L in G, as a sequence of

Rij
edges {A} = {B}, k=1,2,--- L, where By ~ Ay for
k=1,2,---,L—1. When B; ~ Aj, the path is called a cycle.
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Main result

Theorem 8.

An n X n shift-add system defined by shift matrix A with only finite entries
is successively solvable if and only if there exists {B} in a cycle of G, and
there exists a path from {A} to {B}.
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Main result

Theorem 8.

An n X n shift-add system defined by shift matrix A with only finite entries
is successively solvable if and only if there exists {B} in a cycle of G, and
there exists a path from {A} to {B}.

Intuition: if a shift-add system is solvable, the infinite sequence of
reducing operators ends up repeating a recurrent pattern.
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Future work

@ Infinity entries?
@ Rectangular matrices?

@ Algorithm for successive solvability?
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Future work

Thank you!
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