
Successively Solvable Shift-Add Systems — a Graphical

Characterization

Xiaopeng Cheng, Ximing Fu, Yuanxin Guo,

Kenneth W. Shum, and Shenghao Yang

The Chinese University of Hong Kong, Shenzhen

ISIT 2021

1 / 20



Overview

Motivation: Coding theory — Shift-XOR coding

Low complexity: only (non-cyclic) shift and XOR operations involved

Applications:
I Storage codes: Sung & Gong ’13, Fu et al. ’14, Dai et al. ’17
I Regenerating codes: Hou et al. ’13, Fu et al. ’15
I Fountain codes: Nozaki ’14, Jun et al. ’17
I Network codes: Sung & Gong ’14

2 / 20



Overview

Motivation: Coding theory — Shift-XOR coding

Low complexity: only (non-cyclic) shift and XOR operations involved

Applications:
I Storage codes: Sung & Gong ’13, Fu et al. ’14, Dai et al. ’17
I Regenerating codes: Hou et al. ’13, Fu et al. ’15
I Fountain codes: Nozaki ’14, Jun et al. ’17
I Network codes: Sung & Gong ’14

2 / 20



Overview

Motivation: Coding theory — Shift-XOR coding

Low complexity: only (non-cyclic) shift and XOR operations involved

Applications:
I Storage codes: Sung & Gong ’13, Fu et al. ’14, Dai et al. ’17
I Regenerating codes: Hou et al. ’13, Fu et al. ’15
I Fountain codes: Nozaki ’14, Jun et al. ’17
I Network codes: Sung & Gong ’14

2 / 20



Toy example: storage coding

File

x1

x2

x3

y1

y2

y3

y4

A storage system with 4 storage nodes that can tolerate one node failure.

3 / 20



Toy example: shift-XOR coding

4 / 20



Toy example: shift-XOR coding

4 / 20



Toy example: shift-XOR coding

4 / 20



Toy example: shift-XOR coding

4 / 20



Toy example: shift-XOR coding

where z t is the shift operator, defined as

(z ts)[`] =

{
s[`− t], ` ≥ max{t, 0},
0, otherwise.

t < 0: discard/truncate the first (−t) symbols

t =∞: xi does not involve in the forming of y1

4 / 20



Shift-add system

Model data symbols as elements of a finite abelian group (A,+).

A sequence s is a mapping Z→ A satisfying s[i ] = 0 for i < 0.

Consider a shift-add system with n sequences {xi}ni=1 as input and m

sequences {yj}mj=1 as output.

The output sequences are obtained by

yi =
n∑

j=1

zaij xj

where the addition is performed in the additive group A, and the shift

operator z t is defined as in the last slide:

(z ts)[`] =

{
s[`− t], ` ≥ max{t, 0},
0, otherwise.

The matrices Φ = (zaij ) and A = (aij) are both called shift matrices.

5 / 20



Shift-add system

Model data symbols as elements of a finite abelian group (A,+).

A sequence s is a mapping Z→ A satisfying s[i ] = 0 for i < 0.

Consider a shift-add system with n sequences {xi}ni=1 as input and m

sequences {yj}mj=1 as output.

The output sequences are obtained by

yi =
n∑

j=1

zaij xj

where the addition is performed in the additive group A, and the shift

operator z t is defined as in the last slide:

(z ts)[`] =

{
s[`− t], ` ≥ max{t, 0},
0, otherwise.

The matrices Φ = (zaij ) and A = (aij) are both called shift matrices.

5 / 20



Shift-add system

Model data symbols as elements of a finite abelian group (A,+).

A sequence s is a mapping Z→ A satisfying s[i ] = 0 for i < 0.

Consider a shift-add system with n sequences {xi}ni=1 as input and m

sequences {yj}mj=1 as output.

The output sequences are obtained by

yi =
n∑

j=1

zaij xj

where the addition is performed in the additive group A, and the shift

operator z t is defined as in the last slide:

(z ts)[`] =

{
s[`− t], ` ≥ max{t, 0},
0, otherwise.

The matrices Φ = (zaij ) and A = (aij) are both called shift matrices.

5 / 20



Shift-add system

Model data symbols as elements of a finite abelian group (A,+).

A sequence s is a mapping Z→ A satisfying s[i ] = 0 for i < 0.

Consider a shift-add system with n sequences {xi}ni=1 as input and m

sequences {yj}mj=1 as output.

The output sequences are obtained by

yi =
n∑

j=1

zaij xj

where the addition is performed in the additive group A, and the shift

operator z t is defined as in the last slide:

(z ts)[`] =

{
s[`− t], ` ≥ max{t, 0},
0, otherwise.

The matrices Φ = (zaij ) and A = (aij) are both called shift matrices.

5 / 20



Infinite linear system

Motivation: extend the definition in order to develop a general notion

of solvability.

An infinite linear system takes sequence v as input and outputs

sequence u, with

u[j ] =
∑
i∈Ej

v[i ], ∀ j ∈ N0

where N0 = {n ∈ Z, n ≥ 0}, and Ej ⊆ N0 is some finite index set for

each j ∈ N0.

6 / 20



Infinite linear system

Motivation: extend the definition in order to develop a general notion

of solvability.

An infinite linear system takes sequence v as input and outputs

sequence u, with

u[j ] =
∑
i∈Ej

v[i ], ∀ j ∈ N0

where N0 = {n ∈ Z, n ≥ 0}, and Ej ⊆ N0 is some finite index set for

each j ∈ N0.

6 / 20



Infinite linear system: example

Example 1 (Shift-add system is an infinite linear system).

Recall a shift-add system takes the form

yi =
n∑

j=1

zaij xj or yi [`] =
n∑

j=1

xj [`− aij ] =
∑

j∈[n], `≥aij

xj [`− aij ]

Rearrange the entries in the input sequences xj (resp. output

sequences yi ) into a single sequence v (resp. u)., given by

v[n`+ j − 1] = xj [`], u[m`+ i − 1] = yi [`]

Then the shift-add system can be rewritten in the notation of an

infinite linear system as

u[m`+ i − 1] =
∑

k∈Em`+i−1

v[k], Em`+i−1 = N0 ∩
n⋃

i=1

{n(`− aij) + j − 1}

7 / 20



Infinite linear system: example

Example 1 (Shift-add system is an infinite linear system).

Recall a shift-add system takes the form

yi =
n∑

j=1

zaij xj or yi [`] =
n∑

j=1

xj [`− aij ] =
∑

j∈[n], `≥aij

xj [`− aij ]

Rearrange the entries in the input sequences xj (resp. output

sequences yi ) into a single sequence v (resp. u)., given by

v[n`+ j − 1] = xj [`], u[m`+ i − 1] = yi [`]

Then the shift-add system can be rewritten in the notation of an

infinite linear system as

u[m`+ i − 1] =
∑

k∈Em`+i−1

v[k], Em`+i−1 = N0 ∩
n⋃

i=1

{n(`− aij) + j − 1}

7 / 20



Infinite linear system: example

Example 1 (Shift-add system is an infinite linear system).

Recall a shift-add system takes the form

yi =
n∑

j=1

zaij xj or yi [`] =
n∑

j=1

xj [`− aij ] =
∑

j∈[n], `≥aij

xj [`− aij ]

Rearrange the entries in the input sequences xj (resp. output

sequences yi ) into a single sequence v (resp. u)., given by

v[n`+ j − 1] = xj [`], u[m`+ i − 1] = yi [`]

Then the shift-add system can be rewritten in the notation of an

infinite linear system as

u[m`+ i − 1] =
∑

k∈Em`+i−1

v[k], Em`+i−1 = N0 ∩
n⋃

i=1

{n(`− aij) + j − 1}

7 / 20



Solvability of an infinite linear system

Analytic viewpoint: an infinite linear system is solvable if the mapping

v 7→ u is injective.

Algorithmic viewpoint: a notion of solvability that ensures an efficient

solving algorithm.

Definition 1 (Zigzag solvable).

An infinite linear system is zigzag solvable if there exists two functions
f , g : N0 → N0 such that

1 f is bijective;

2 {f (i)} ⊆ Eg(i) ⊆
⋃i

`=0{f (i)}, for all i ∈ N0.

8 / 20



Solvability of an infinite linear system

Analytic viewpoint: an infinite linear system is solvable if the mapping

v 7→ u is injective.

Algorithmic viewpoint: a notion of solvability that ensures an efficient

solving algorithm.

Definition 1 (Zigzag solvable).

An infinite linear system is zigzag solvable if there exists two functions
f , g : N0 → N0 such that

1 f is bijective;

2 {f (i)} ⊆ Eg(i) ⊆
⋃i

`=0{f (i)}, for all i ∈ N0.

8 / 20



Solvability of an infinite linear system

Analytic viewpoint: an infinite linear system is solvable if the mapping

v 7→ u is injective.

Algorithmic viewpoint: a notion of solvability that ensures an efficient

solving algorithm.

Definition 1 (Zigzag solvable).

An infinite linear system is zigzag solvable if there exists two functions
f , g : N0 → N0 such that

1 f is bijective;

2 {f (i)} ⊆ Eg(i) ⊆
⋃i

`=0{f (i)}, for all i ∈ N0.

8 / 20



Zigzag solvability: intuition

Zigzag solvability ensures a solving algorithm called zigzag decoding .

In each of the i-th stage (i ∈ N0), we use a symbol in sequence u to

solve for a symbol in sequence v.

f (i) indicates the index of the symbol in v solved in the i-th stage.

g(i) indicates the index of the symbol in u used in the i-th stage.

Condition 1 guarantees that every symbol in v is solved exactly once.

Condition 2 guarantees that the substitution algorithm can proceed,

i.e., u[g(i)] can be written as the sum of v[f (i)] and input symbols

that are solved prior to the i-th stage.

9 / 20



Zigzag solvability: intuition

Zigzag solvability ensures a solving algorithm called zigzag decoding .

In each of the i-th stage (i ∈ N0), we use a symbol in sequence u to

solve for a symbol in sequence v.

f (i) indicates the index of the symbol in v solved in the i-th stage.

g(i) indicates the index of the symbol in u used in the i-th stage.

Condition 1 guarantees that every symbol in v is solved exactly once.

Condition 2 guarantees that the substitution algorithm can proceed,

i.e., u[g(i)] can be written as the sum of v[f (i)] and input symbols

that are solved prior to the i-th stage.

9 / 20



Successive solvability

Motivation: determining f and g is generally hard.

Aim: develop a stronger notion of solvability that puts some

constraints on f and g .

Focus on shift-add systems.

Abusing notation: use (j , `) in place of (n`+ j − 1) for the index of

xj [`] in v, and (i , `) in place of (m`+ i − 1) for the index of yi [`] in u.

Definition 2 (Successively solvable).

A shift-add system is successively solvable if it is zigzag solvable with

functions f , g , and satisfies an additional condition:

3 f −1(j , `) < f −1(j , `′) whenever 0 ≤ ` < `′, for all 1 ≤ j ≤ n.

10 / 20



Successive solvability

Motivation: determining f and g is generally hard.

Aim: develop a stronger notion of solvability that puts some

constraints on f and g .

Focus on shift-add systems.

Abusing notation: use (j , `) in place of (n`+ j − 1) for the index of

xj [`] in v, and (i , `) in place of (m`+ i − 1) for the index of yi [`] in u.

Definition 2 (Successively solvable).

A shift-add system is successively solvable if it is zigzag solvable with

functions f , g , and satisfies an additional condition:

3 f −1(j , `) < f −1(j , `′) whenever 0 ≤ ` < `′, for all 1 ≤ j ≤ n.

10 / 20



Successive solvability

Motivation: determining f and g is generally hard.

Aim: develop a stronger notion of solvability that puts some

constraints on f and g .

Focus on shift-add systems.

Abusing notation: use (j , `) in place of (n`+ j − 1) for the index of

xj [`] in v, and (i , `) in place of (m`+ i − 1) for the index of yi [`] in u.

Definition 2 (Successively solvable).

A shift-add system is successively solvable if it is zigzag solvable with

functions f , g , and satisfies an additional condition:

3 f −1(j , `) < f −1(j , `′) whenever 0 ≤ ` < `′, for all 1 ≤ j ≤ n.

10 / 20



Successive solvability: intuition

Successive solvability guarantees that the symbols of each variable

sequence are solved successively from left to right.

This adds regularity to the solving algorithm, as in each stage, the

function f takes value in the index of the first unsolved symbol of

each variable sequence.

For shift-add systems, zigzag solvable does NOT implies successively

solvable.

11 / 20



Successive solvability: intuition

Successive solvability guarantees that the symbols of each variable

sequence are solved successively from left to right.

This adds regularity to the solving algorithm, as in each stage, the

function f takes value in the index of the first unsolved symbol of

each variable sequence.

For shift-add systems, zigzag solvable does NOT implies successively

solvable.

11 / 20



Zigzag solvability and successive solvability

Example 2 (Zigzag solvable 6⇒ successively solvable).

Consider the shift-add system with shift matrix

A =

 0 0 ∞
∞ −1 ∞
−1 0 1


The system is zigzag solvable but not successively solvable.

In the 0-th stage, can only decode x2[`] for some ` ≥ 1.

f −1(2, 0) > f −1(2, `), violating successive solvability.

Proposition 1.

For a shift-add system corresponding to a non-negative shift matrix, it is

zigzag solvable if and only if it is successively solvable.

12 / 20



Zigzag solvability and successive solvability

Example 2 (Zigzag solvable 6⇒ successively solvable).

Consider the shift-add system with shift matrix

A =

 0 0 ∞
∞ −1 ∞
−1 0 1


The system is zigzag solvable but not successively solvable.

In the 0-th stage, can only decode x2[`] for some ` ≥ 1.

f −1(2, 0) > f −1(2, `), violating successive solvability.

Proposition 1.

For a shift-add system corresponding to a non-negative shift matrix, it is

zigzag solvable if and only if it is successively solvable.

12 / 20



Reduction of shift-add systems

Focus on shift-add systems with square shift matrices.

Consider the 0-th stage of a zigzag decoding algorithm.

Suppose there exists i , j such that aij = 0 and aik > 0 for all k 6= j .

We have yi [0] = xj [0]. Let f (0) = (j , 0), g(0) = (i , 0).

A decoding stage can be seen as a reduction of a shift-add system.

Let x′j = z−1xj , i.e., x′j [t] = xj [t + 1] for t ≥ 0.

Let y′i = z−1yi , i.e., y′i [t] = yi [t + 1] for t ≥ 0.

For 1 ≤ k ≤ n, k 6= i , let y′k be such that

y′k [t] =

{
yk [t]− xj [0], if t = akj ,

yk [t], otherwise,
for t ≥ 0.

13 / 20



Reduction of shift-add systems

Focus on shift-add systems with square shift matrices.

Consider the 0-th stage of a zigzag decoding algorithm.

Suppose there exists i , j such that aij = 0 and aik > 0 for all k 6= j .

We have yi [0] = xj [0]. Let f (0) = (j , 0), g(0) = (i , 0).

A decoding stage can be seen as a reduction of a shift-add system.

Let x′j = z−1xj , i.e., x′j [t] = xj [t + 1] for t ≥ 0.

Let y′i = z−1yi , i.e., y′i [t] = yi [t + 1] for t ≥ 0.

For 1 ≤ k ≤ n, k 6= i , let y′k be such that

y′k [t] =

{
yk [t]− xj [0], if t = akj ,

yk [t], otherwise,
for t ≥ 0.

13 / 20



Reduction of shift-add systems

Focus on shift-add systems with square shift matrices.

Consider the 0-th stage of a zigzag decoding algorithm.

Suppose there exists i , j such that aij = 0 and aik > 0 for all k 6= j .

We have yi [0] = xj [0]. Let f (0) = (j , 0), g(0) = (i , 0).

A decoding stage can be seen as a reduction of a shift-add system.

Let x′j = z−1xj , i.e., x′j [t] = xj [t + 1] for t ≥ 0.

Let y′i = z−1yi , i.e., y′i [t] = yi [t + 1] for t ≥ 0.

For 1 ≤ k ≤ n, k 6= i , let y′k be such that

y′k [t] =

{
yk [t]− xj [0], if t = akj ,

yk [t], otherwise,
for t ≥ 0.

13 / 20



Reduction: example

Shift matrix: A =

0 0 0

0 1 1

1 0 1


14 / 20



Reduction: example

Shift matrix: A =

0 0 0

0 1 1

1 0 1


14 / 20



Reduction: example

Shift matrix: A′ =

1 0 0

0 0 0

2 0 1


14 / 20



Definitions on shift matrix

Definition 3 (Pivot, reductive).

Given a shift matrix A, the (i , j)-th entry is called a pivot if (i) aij ≥ 0,

and (ii) aij < aik for all k 6= j . We say that a shift matrix A is reductive if

A contains a pivot.

Definition 4 (Equivalent).

Denote the i-th row of matrix A by ai and the all-one row vector by 1.

Two shift matrices A and B are equivalent, or A ∼ B, if ai − bi = ci · 1,

where ci = 0 whenever ∃ j s.t. aij < 0 or bij < 0.

Definition 5 (Reducing operator).

The (i , j)-th reducing operator Rij is defined by (Rij)k` = δj ,` − δi ,k , where

δ·,· is the Kronecker’s delta function.

15 / 20



Definitions on shift matrix

Definition 3 (Pivot, reductive).

Given a shift matrix A, the (i , j)-th entry is called a pivot if (i) aij ≥ 0,

and (ii) aij < aik for all k 6= j . We say that a shift matrix A is reductive if

A contains a pivot.

Definition 4 (Equivalent).

Denote the i-th row of matrix A by ai and the all-one row vector by 1.

Two shift matrices A and B are equivalent, or A ∼ B, if ai − bi = ci · 1,

where ci = 0 whenever ∃ j s.t. aij < 0 or bij < 0.

Definition 5 (Reducing operator).

The (i , j)-th reducing operator Rij is defined by (Rij)k` = δj ,` − δi ,k , where

δ·,· is the Kronecker’s delta function.

15 / 20



Definitions on shift matrix

Definition 3 (Pivot, reductive).

Given a shift matrix A, the (i , j)-th entry is called a pivot if (i) aij ≥ 0,

and (ii) aij < aik for all k 6= j . We say that a shift matrix A is reductive if

A contains a pivot.

Definition 4 (Equivalent).

Denote the i-th row of matrix A by ai and the all-one row vector by 1.

Two shift matrices A and B are equivalent, or A ∼ B, if ai − bi = ci · 1,

where ci = 0 whenever ∃ j s.t. aij < 0 or bij < 0.

Definition 5 (Reducing operator).

The (i , j)-th reducing operator Rij is defined by (Rij)k` = δj ,` − δi ,k , where

δ·,· is the Kronecker’s delta function.

15 / 20



Graphical construction: Intuition

Successive zigzag decoding algorithm ⇔ Infinite sequence of reducing

operators

Hypothesis: recurrent pattern in the infinite sequence

Graphical characterization: intuition
I Shift matrix ↔ vertex
I Reducing operator ↔ edge
I Sequence of operators ↔ infinite walk
I Recurrent pattern ↔ walk on cycle

Lemma 2.

Suppose the (i , j)-th entry of an n × n shift matrix A is a pivot. If A′ ∼ A,

then the (i , j)-th entry is a pivot of A′, and (Rij + A) ∼ (Rij + A′).

16 / 20



Graphical construction: Intuition

Successive zigzag decoding algorithm ⇔ Infinite sequence of reducing

operators

Hypothesis: recurrent pattern in the infinite sequence

Graphical characterization: intuition
I Shift matrix ↔ vertex
I Reducing operator ↔ edge
I Sequence of operators ↔ infinite walk
I Recurrent pattern ↔ walk on cycle

Lemma 2.

Suppose the (i , j)-th entry of an n × n shift matrix A is a pivot. If A′ ∼ A,

then the (i , j)-th entry is a pivot of A′, and (Rij + A) ∼ (Rij + A′).

16 / 20



Graphical construction: Intuition

Successive zigzag decoding algorithm ⇔ Infinite sequence of reducing

operators

Hypothesis: recurrent pattern in the infinite sequence

Graphical characterization: intuition
I Shift matrix ↔ vertex
I Reducing operator ↔ edge
I Sequence of operators ↔ infinite walk
I Recurrent pattern ↔ walk on cycle

Lemma 2.

Suppose the (i , j)-th entry of an n × n shift matrix A is a pivot. If A′ ∼ A,

then the (i , j)-th entry is a pivot of A′, and (Rij + A) ∼ (Rij + A′).

16 / 20



Graphical construction: Intuition

Successive zigzag decoding algorithm ⇔ Infinite sequence of reducing

operators

Hypothesis: recurrent pattern in the infinite sequence

Graphical characterization: intuition
I Shift matrix ↔ vertex
I Reducing operator ↔ edge
I Sequence of operators ↔ infinite walk
I Recurrent pattern ↔ walk on cycle

Lemma 2.

Suppose the (i , j)-th entry of an n × n shift matrix A is a pivot. If A′ ∼ A,

then the (i , j)-th entry is a pivot of A′, and (Rij + A) ∼ (Rij + A′).

16 / 20



Definitions on Gn

Definition 6 (Gn).

For a fixed positive integer n, we define a directed (multi)graph Gn whose

vertices are equivalence classes of shift matrices with finite entries. Given

two shift matrices A and B with finite entries, there is a directed edge from

{A} to {B} (written {A}
Rij→ {B}) if A has a pivot (i , j) and Rij + A ∼ B.

Definition 7 (Path, cycle).

For positive integer L, we define a path of length L in Gn as a sequence of

edges {Ak}
Rik jk→ {Bk}, k = 1, 2, · · · , L, where Bk ∼ Ak+1 for

k = 1, 2, · · · , L− 1. When BL ∼ A1, the path is called a cycle.

17 / 20



Definitions on Gn

Definition 6 (Gn).

For a fixed positive integer n, we define a directed (multi)graph Gn whose

vertices are equivalence classes of shift matrices with finite entries. Given

two shift matrices A and B with finite entries, there is a directed edge from

{A} to {B} (written {A}
Rij→ {B}) if A has a pivot (i , j) and Rij + A ∼ B.

Definition 7 (Path, cycle).

For positive integer L, we define a path of length L in Gn as a sequence of

edges {Ak}
Rik jk→ {Bk}, k = 1, 2, · · · , L, where Bk ∼ Ak+1 for

k = 1, 2, · · · , L− 1. When BL ∼ A1, the path is called a cycle.

17 / 20



Main result

Theorem 8.

An n× n shift-add system defined by shift matrix A with only finite entries

is successively solvable if and only if there exists {B} in a cycle of Gn and

there exists a path from {A} to {B}.

18 / 20



Main result

Theorem 8.

An n× n shift-add system defined by shift matrix A with only finite entries

is successively solvable if and only if there exists {B} in a cycle of Gn and

there exists a path from {A} to {B}.

Intuition: if a shift-add system is solvable, the infinite sequence of

reducing operators ends up repeating a recurrent pattern.

18 / 20



Future work

Infinity entries?

Rectangular matrices?

Algorithm for successive solvability?

19 / 20



Future work

Thank you!

20 / 20


