Successively Solvable Shift－Add Systems－a Graphical Characterization

Xiaopeng Cheng，Ximing Fu，Yuanxin Guo， Kenneth W．Shum，and Shenghao Yang

The Chinese University of Hong Kong，Shenzhen
ISIT 2021

香港中文大學（深圳）
The Chinese University of Hong Kong，Shenzhen

Overview

- Motivation: Coding theory — Shift-XOR coding

Overview

- Motivation: Coding theory - Shift-XOR coding
- Low complexity: only (non-cyclic) shift and XOR operations involved

Overview

- Motivation: Coding theory - Shift-XOR coding
- Low complexity: only (non-cyclic) shift and XOR operations involved
- Applications:
- Storage codes: Sung \& Gong '13, Fu et al. '14, Dai et al. '17
- Regenerating codes: Hou et al. '13, Fu et al. '15
- Fountain codes: Nozaki '14, Jun et al. '17
- Network codes: Sung \& Gong '14

Toy example: storage coding

A storage system with 4 storage nodes that can tolerate one node failure.

Toy example: shift-XOR coding

Toy example: shift-XOR coding

Toy example: shift-XOR coding

Toy example: shift-XOR coding

Toy example: shift-XOR coding

where z^{t} is the shift operator, defined as

$$
\left(z^{t} \mathbf{s}\right)[\ell]= \begin{cases}\mathbf{s}[\ell-t], & \ell \geq \max \{t, 0\} \\ 0, & \text { otherwise }\end{cases}
$$

- $t<0$: discard/truncate the first $(-t)$ symbols
- $t=\infty: \mathbf{x}_{i}$ does not involve in the forming of \mathbf{y}_{1}

Shift-add system

- Model data symbols as elements of a finite abelian group $(\mathcal{A},+)$. A sequence \mathbf{s} is a mapping $\mathbb{Z} \rightarrow \mathcal{A}$ satisfying $\mathbf{s}[i]=0$ for $i<0$.

Shift-add system

- Model data symbols as elements of a finite abelian group $(\mathcal{A},+)$. A sequence \mathbf{s} is a mapping $\mathbb{Z} \rightarrow \mathcal{A}$ satisfying $\mathbf{s}[i]=0$ for $i<0$.
- Consider a shift-add system with n sequences $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$ as input and m sequences $\left\{\mathbf{y}_{j}\right\}_{j=1}^{m}$ as output.

Shift-add system

- Model data symbols as elements of a finite abelian group $(\mathcal{A},+)$. A sequence \mathbf{s} is a mapping $\mathbb{Z} \rightarrow \mathcal{A}$ satisfying $\mathbf{s}[i]=0$ for $i<0$.
- Consider a shift-add system with n sequences $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$ as input and m sequences $\left\{\mathbf{y}_{j}\right\}_{j=1}^{m}$ as output.
- The output sequences are obtained by

$$
\mathbf{y}_{i}=\sum_{j=1}^{n} z^{a_{i j}} \mathbf{x}_{j}
$$

where the addition is performed in the additive group \mathcal{A}, and the shift operator z^{t} is defined as in the last slide:

$$
\left(z^{t} \mathbf{s}\right)[\ell]= \begin{cases}\mathbf{s}[\ell-t], & \ell \geq \max \{t, 0\} \\ 0, & \text { otherwise }\end{cases}
$$

Shift-add system

- Model data symbols as elements of a finite abelian $\operatorname{group}(\mathcal{A},+)$. A sequence \mathbf{s} is a mapping $\mathbb{Z} \rightarrow \mathcal{A}$ satisfying $\mathbf{s}[i]=0$ for $i<0$.
- Consider a shift-add system with n sequences $\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}$ as input and m sequences $\left\{\mathbf{y}_{j}\right\}_{j=1}^{m}$ as output.
- The output sequences are obtained by

$$
\mathbf{y}_{i}=\sum_{j=1}^{n} z^{a_{i j}} \mathbf{x}_{j}
$$

where the addition is performed in the additive group \mathcal{A}, and the shift operator z^{t} is defined as in the last slide:

$$
\left(z^{t} \mathbf{s}\right)[\ell]= \begin{cases}\mathbf{s}[\ell-t], & \ell \geq \max \{t, 0\} \\ 0, & \text { otherwise }\end{cases}
$$

- The matrices $\Phi=\left(z^{a_{i j}}\right)$ and $A=\left(a_{i j}\right)$ are both called shift matrices.

Infinite linear system

- Motivation: extend the definition in order to develop a general notion of solvability.

Infinite linear system

- Motivation: extend the definition in order to develop a general notion of solvability.
- An infinite linear system takes sequence \mathbf{v} as input and outputs sequence \mathbf{u}, with

$$
\mathbf{u}[j]=\sum_{i \in E_{j}} \mathbf{v}[i], \forall j \in \mathbb{N}_{0}
$$

where $\mathbb{N}_{0}=\{n \in \mathbb{Z}, n \geq 0\}$, and $E_{j} \subseteq N_{0}$ is some finite index set for each $j \in \mathbb{N}_{0}$.

Infinite linear system: example

Example 1 (Shift-add system is an infinite linear system).

- Recall a shift-add system takes the form

$$
\mathbf{y}_{i}=\sum_{j=1}^{n} z^{a_{i j}} \mathbf{x}_{j} \quad \text { or } \quad \mathbf{y}_{i}[\ell]=\sum_{j=1}^{n} \mathbf{x}_{j}\left[\ell-a_{i j}\right]=\sum_{j \in[n], \ell \geq a_{i j}} \mathbf{x}_{j}\left[\ell-a_{i j}\right]
$$

Infinite linear system: example

Example 1 (Shift-add system is an infinite linear system).

- Recall a shift-add system takes the form

$$
\mathbf{y}_{i}=\sum_{j=1}^{n} z^{a_{i j}} \mathbf{x}_{j} \quad \text { or } \quad \mathbf{y}_{i}[\ell]=\sum_{j=1}^{n} \mathbf{x}_{j}\left[\ell-a_{i j}\right]=\sum_{j \in[n], \ell \geq a_{i j}} \mathbf{x}_{j}\left[\ell-a_{i j}\right]
$$

- Rearrange the entries in the input sequences \mathbf{x}_{j} (resp. output sequences \mathbf{y}_{i}) into a single sequence \mathbf{v} (resp. \mathbf{u})., given by

$$
\mathbf{v}[n \ell+j-1]=\mathbf{x}_{j}[\ell], \quad \mathbf{u}[m \ell+i-1]=\mathbf{y}_{i}[\ell]
$$

Infinite linear system: example

Example 1 (Shift-add system is an infinite linear system).

- Recall a shift-add system takes the form

$$
\mathbf{y}_{i}=\sum_{j=1}^{n} z^{a_{i j}} \mathbf{x}_{j} \quad \text { or } \quad \mathbf{y}_{i}[\ell]=\sum_{j=1}^{n} \mathbf{x}_{j}\left[\ell-a_{i j}\right]=\sum_{j \in[n], \ell \geq a_{i j}} \mathbf{x}_{j}\left[\ell-a_{i j}\right]
$$

- Rearrange the entries in the input sequences \mathbf{x}_{j} (resp. output sequences \mathbf{y}_{i}) into a single sequence \mathbf{v} (resp. \mathbf{u})., given by

$$
\mathbf{v}[n \ell+j-1]=\mathbf{x}_{j}[\ell], \quad \mathbf{u}[m \ell+i-1]=\mathbf{y}_{i}[\ell]
$$

- Then the shift-add system can be rewritten in the notation of an infinite linear system as

$$
\mathbf{u}[m \ell+i-1]=\sum_{k \in E_{m \ell+i-1}} \mathbf{v}[k], \quad E_{m \ell+i-1}=\mathbb{N}_{0} \cap \bigcup_{i=1}^{n}\left\{n\left(\ell-a_{i j}\right)+j-1\right\}
$$

Solvability of an infinite linear system

- Analytic viewpoint: an infinite linear system is solvable if the mapping $\mathbf{v} \mapsto \mathbf{u}$ is injective.

Solvability of an infinite linear system

- Analytic viewpoint: an infinite linear system is solvable if the mapping $\mathbf{v} \mapsto \mathbf{u}$ is injective.
- Algorithmic viewpoint: a notion of solvability that ensures an efficient solving algorithm.

Solvability of an infinite linear system

- Analytic viewpoint: an infinite linear system is solvable if the mapping $\mathbf{v} \mapsto \mathbf{u}$ is injective.
- Algorithmic viewpoint: a notion of solvability that ensures an efficient solving algorithm.

Definition 1 (Zigzag solvable).

An infinite linear system is zigzag solvable if there exists two functions $f, g: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ such that
(1) f is bijective;
(2) $\{f(i)\} \subseteq E_{g(i)} \subseteq \bigcup_{\ell=0}^{i}\{f(i)\}$, for all $i \in \mathbb{N}_{0}$.

Zigzag solvability: intuition

- Zigzag solvability ensures a solving algorithm called zigzag decoding.
- In each of the i-th stage ($i \in \mathbb{N}_{0}$), we use a symbol in sequence \mathbf{u} to solve for a symbol in sequence \mathbf{v}.
- $f(i)$ indicates the index of the symbol in \mathbf{v} solved in the i-th stage.
- $g(i)$ indicates the index of the symbol in \mathbf{u} used in the i-th stage.

Zigzag solvability: intuition

- Zigzag solvability ensures a solving algorithm called zigzag decoding.
- In each of the i-th stage $\left(i \in \mathbb{N}_{0}\right)$, we use a symbol in sequence \mathbf{u} to solve for a symbol in sequence \mathbf{v}.
- $f(i)$ indicates the index of the symbol in \mathbf{v} solved in the i-th stage.
- $g(i)$ indicates the index of the symbol in \mathbf{u} used in the i-th stage.
- Condition 1 guarantees that every symbol in \mathbf{v} is solved exactly once.
- Condition 2 guarantees that the substitution algorithm can proceed, i.e., $\mathbf{u}[g(i)]$ can be written as the sum of $\mathbf{v}[f(i)]$ and input symbols that are solved prior to the i-th stage.

Successive solvability

- Motivation: determining f and g is generally hard.
- Aim: develop a stronger notion of solvability that puts some constraints on f and g.

Successive solvability

- Motivation: determining f and g is generally hard.
- Aim: develop a stronger notion of solvability that puts some constraints on f and g.
- Focus on shift-add systems.
- Abusing notation: use (j, ℓ) in place of $(n \ell+j-1)$ for the index of $\mathbf{x}_{j}[\ell]$ in \mathbf{v}, and (i, ℓ) in place of $(m \ell+i-1)$ for the index of $\mathbf{y}_{i}[\ell]$ in \mathbf{u}.

Successive solvability

- Motivation: determining f and g is generally hard.
- Aim: develop a stronger notion of solvability that puts some constraints on f and g.
- Focus on shift-add systems.
- Abusing notation: use (j, ℓ) in place of $(n \ell+j-1)$ for the index of $\mathbf{x}_{j}[\ell]$ in \mathbf{v}, and (i, ℓ) in place of $(m \ell+i-1)$ for the index of $\mathbf{y}_{i}[\ell]$ in \mathbf{u}.

Definition 2 (Successively solvable).

A shift-add system is successively solvable if it is zigzag solvable with functions f, g, and satisfies an additional condition:
(3) $f^{-1}(j, \ell)<f^{-1}\left(j, \ell^{\prime}\right)$ whenever $0 \leq \ell<\ell^{\prime}$, for all $1 \leq j \leq n$.

Successive solvability: intuition

- Successive solvability guarantees that the symbols of each variable sequence are solved successively from left to right.
- This adds regularity to the solving algorithm, as in each stage, the function f takes value in the index of the first unsolved symbol of each variable sequence.

Successive solvability: intuition

- Successive solvability guarantees that the symbols of each variable sequence are solved successively from left to right.
- This adds regularity to the solving algorithm, as in each stage, the function f takes value in the index of the first unsolved symbol of each variable sequence.
- For shift-add systems, zigzag solvable does NOT implies successively solvable.

Zigzag solvability and successive solvability

Example 2 (Zigzag solvable \nRightarrow successively solvable).

- Consider the shift-add system with shift matrix

$$
A=\left(\begin{array}{ccc}
0 & 0 & \infty \\
\infty & -1 & \infty \\
-1 & 0 & 1
\end{array}\right)
$$

- The system is zigzag solvable but not successively solvable.
- In the 0 -th stage, can only decode $\mathbf{x}_{2}[\ell]$ for some $\ell \geq 1$.
- $f^{-1}(2,0)>f^{-1}(2, \ell)$, violating successive solvability.

Zigzag solvability and successive solvability

Example 2 (Zigzag solvable \nRightarrow successively solvable).

- Consider the shift-add system with shift matrix

$$
A=\left(\begin{array}{ccc}
0 & 0 & \infty \\
\infty & -1 & \infty \\
-1 & 0 & 1
\end{array}\right)
$$

- The system is zigzag solvable but not successively solvable.
- In the 0 -th stage, can only decode $\mathbf{x}_{2}[\ell]$ for some $\ell \geq 1$.
- $f^{-1}(2,0)>f^{-1}(2, \ell)$, violating successive solvability.

Proposition 1.

For a shift-add system corresponding to a non-negative shift matrix, it is zigzag solvable if and only if it is successively solvable.

Reduction of shift-add systems

- Focus on shift-add systems with square shift matrices.

Reduction of shift-add systems

- Focus on shift-add systems with square shift matrices.
- Consider the 0-th stage of a zigzag decoding algorithm.
- Suppose there exists i, j such that $a_{i j}=0$ and $a_{i k}>0$ for all $k \neq j$. We have $\mathbf{y}_{i}[0]=\mathbf{x}_{j}[0]$. Let $f(0)=(j, 0), g(0)=(i, 0)$.

Reduction of shift-add systems

- Focus on shift-add systems with square shift matrices.
- Consider the 0-th stage of a zigzag decoding algorithm.
- Suppose there exists i, j such that $a_{i j}=0$ and $a_{i k}>0$ for all $k \neq j$. We have $\mathbf{y}_{i}[0]=\mathbf{x}_{j}[0]$. Let $f(0)=(j, 0), g(0)=(i, 0)$.
- A decoding stage can be seen as a reduction of a shift-add system.
- Let $\mathbf{x}_{j}^{\prime}=z^{-1} \mathbf{x}_{j}$, i.e., $\mathbf{x}_{j}^{\prime}[t]=\mathbf{x}_{j}[t+1]$ for $t \geq 0$.
- Let $\mathbf{y}_{i}^{\prime}=z^{-1} \mathbf{y}_{i}$, i.e., $\mathbf{y}_{i}^{\prime}[t]=\mathbf{y}_{i}[t+1]$ for $t \geq 0$.
- For $1 \leq k \leq n, k \neq i$, let \mathbf{y}_{k}^{\prime} be such that

$$
\mathbf{y}_{k}^{\prime}[t]=\left\{\begin{array}{ll}
\mathbf{y}_{k}[t]-\mathbf{x}_{j}[0], & \text { if } t=a_{k j}, \\
\mathbf{y}_{k}[t], & \text { otherwise }
\end{array} \quad \text { for } t \geq 0\right.
$$

Reduction: example

Shift matrix: $A=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$

Reduction: example

Shift matrix: $A=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right)$

Reduction: example

Shift matrix: $A^{\prime}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 1\end{array}\right)$

Definitions on shift matrix

Definition 3 (Pivot, reductive).

Given a shift matrix A, the (i, j)-th entry is called a pivot if (i) $a_{i j} \geq 0$, and (ii) $a_{i j}<a_{i k}$ for all $k \neq j$. We say that a shift matrix A is reductive if A contains a pivot.

Definitions on shift matrix

Definition 3 (Pivot, reductive).

Given a shift matrix A, the (i, j)-th entry is called a pivot if (i) $a_{i j} \geq 0$, and (ii) $a_{i j}<a_{i k}$ for all $k \neq j$. We say that a shift matrix A is reductive if A contains a pivot.

Definition 4 (Equivalent).

Denote the i-th row of matrix A by \mathbf{a}_{i} and the all-one row vector by $\mathbf{1}$. Two shift matrices A and B are equivalent, or $A \sim B$, if $\mathbf{a}_{i}-\mathbf{b}_{i}=c_{i} \cdot \mathbf{1}$, where $c_{i}=0$ whenever $\exists j$ s.t. $a_{i j}<0$ or $b_{i j}<0$.

Definitions on shift matrix

Definition 3 (Pivot, reductive).

Given a shift matrix A, the (i, j)-th entry is called a pivot if (i) $a_{i j} \geq 0$, and (ii) $a_{i j}<a_{i k}$ for all $k \neq j$. We say that a shift matrix A is reductive if A contains a pivot.

Definition 4 (Equivalent).

Denote the i-th row of matrix A by \mathbf{a}_{i} and the all-one row vector by $\mathbf{1}$. Two shift matrices A and B are equivalent, or $A \sim B$, if $\mathbf{a}_{i}-\mathbf{b}_{i}=c_{i} \cdot \mathbf{1}$, where $c_{i}=0$ whenever $\exists j$ s.t. $a_{i j}<0$ or $b_{i j}<0$.

Definition 5 (Reducing operator).

The (i, j)-th reducing operator $R_{i j}$ is defined by $\left(R_{i j}\right)_{k \ell}=\delta_{j, \ell}-\delta_{i, k}$, where $\delta_{\text {., }}$ is the Kronecker's delta function.

Graphical construction: Intuition

- Successive zigzag decoding algorithm \Leftrightarrow Infinite sequence of reducing operators

Graphical construction: Intuition

- Successive zigzag decoding algorithm \Leftrightarrow Infinite sequence of reducing operators
- Hypothesis: recurrent pattern in the infinite sequence

Graphical construction: Intuition

- Successive zigzag decoding algorithm \Leftrightarrow Infinite sequence of reducing operators
- Hypothesis: recurrent pattern in the infinite sequence
- Graphical characterization: intuition
- Shift matrix \leftrightarrow vertex
- Reducing operator \leftrightarrow edge
- Sequence of operators \leftrightarrow infinite walk
- Recurrent pattern \leftrightarrow walk on cycle

Graphical construction: Intuition

- Successive zigzag decoding algorithm \Leftrightarrow Infinite sequence of reducing operators
- Hypothesis: recurrent pattern in the infinite sequence
- Graphical characterization: intuition
- Shift matrix \leftrightarrow vertex
- Reducing operator \leftrightarrow edge
- Sequence of operators \leftrightarrow infinite walk
- Recurrent pattern \leftrightarrow walk on cycle

Lemma 2.

Suppose the (i, j)-th entry of an $n \times n$ shift matrix A is a pivot. If $A^{\prime} \sim A$, then the (i, j)-th entry is a pivot of A^{\prime}, and $\left(R_{i j}+A\right) \sim\left(R_{i j}+A^{\prime}\right)$.

Definitions on \mathcal{G}_{n}

Definition $6\left(\mathcal{G}_{n}\right)$.

For a fixed positive integer n, we define a directed (multi)graph \mathcal{G}_{n} whose vertices are equivalence classes of shift matrices with finite entries. Given two shift matrices A and B with finite entries, there is a directed edge from $\{A\}$ to $\{B\}$ (written $\left.\{A\} \xrightarrow{R_{i j}}\{B\}\right)$ if A has a pivot (i, j) and $R_{i j}+A \sim B$.

Definitions on \mathcal{G}_{n}

Definition $6\left(\mathcal{G}_{n}\right)$.

For a fixed positive integer n, we define a directed (multi)graph \mathcal{G}_{n} whose vertices are equivalence classes of shift matrices with finite entries. Given two shift matrices A and B with finite entries, there is a directed edge from $\{A\}$ to $\{B\}$ (written $\left.\{A\} \xrightarrow{R_{i j}}\{B\}\right)$ if A has a pivot (i, j) and $R_{i j}+A \sim B$.

Definition 7 (Path, cycle).

For positive integer L, we define a path of length L in \mathcal{G}_{n} as a sequence of edges $\left\{A_{k}\right\} \xrightarrow{R_{i_{k} j_{k}}}\left\{B_{k}\right\}, k=1,2, \cdots, L$, where $B_{k} \sim A_{k+1}$ for $k=1,2, \cdots, L-1$. When $B_{L} \sim A_{1}$, the path is called a cycle.

Main result

Theorem 8.

An $n \times n$ shift-add system defined by shift matrix A with only finite entries is successively solvable if and only if there exists $\{B\}$ in a cycle of \mathcal{G}_{n} and there exists a path from $\{A\}$ to $\{B\}$.

Main result

Theorem 8.

An $n \times n$ shift-add system defined by shift matrix A with only finite entries is successively solvable if and only if there exists $\{B\}$ in a cycle of \mathcal{G}_{n} and there exists a path from $\{A\}$ to $\{B\}$.

Intuition: if a shift-add system is solvable, the infinite sequence of reducing operators ends up repeating a recurrent pattern.

Future work

- Infinity entries?
- Rectangular matrices?
- Algorithm for successive solvability?

Future work

Thank you!

