
Successively Solvable Shift-Add Systems
— a Graphical Characterization

Xiaopeng Cheng, Ximing Fu, Yuanxin Guo, Kenneth W. Shum and Shenghao Yang†

Abstract—In order to reduce computational complexity in data
encoding, one can use bitwise shifts and logical XOR operations
instead of more costly calculations, and apply a fast decoding
method called zigzag decoding. Existing works on zigzag decoding
usually design special generator matrices that enable certain
zigzag solving algorithms. In this paper, we study this class
of fast decoding methods holistically. The shift operations are
represented by a shift matrix, whose entries are integers or
a special infinity symbol. A negative entry signifies that some
symbols are truncated, and an infinity symbol means that the
corresponding input sequence is not involved in the encoding
process. Two notions of solvability, called successive solvability
and zigzag solvability, are formulated. The former is employed
in most of the existing works on zigzag decoding, and is a
special case of the latter one. We prove in this paper that
these two notions of solvability are equivalent when the shift
matrix have no negative entries. An equivalent condition for a
successively solvable shift-XOR system is derived in terms of a
directed graph, when the shift matrix has only finite entries. This
characterization reveals the structure and the interconnections
between the problem instances.

I. INTRODUCTION

Due to the advantage of low encoding and decoding compu-
tation costs, (non-cyclic) shift and XOR operations have been
extensively studied in the past several years for constructing
storage codes [1]–[6], regenerating codes [7]–[10], fountain
codes [11]–[14] and network codes [15]. The encoding of
shift-XOR codes involves only XOR calculations. Using n
message sequences, each consisting of L bits, the encoding of
a (non-systematic) coded sequence requires at most (n− 1)L
XOR operations.

The decoding problem of these shift-XOR codes involves
solving an n × n system of equations with binary polyno-
mials as coefficients. When the coefficients satisfy certain
conditions, we can apply a low-complexity zigzag decoding
in solving the system of equations. Existing works have char-
acterized several classes of codes that are zigzag decodable.
When the generator matrix satisfies the refined increasing
difference (RID) property, a zigzag decoding algorithm can
be applied [1], [4], [10], which consumes the same number
of XOR operations as in the encoding the n coded sequences.

The authors are with The Chinese University of Hong Kong, Shen-
zhen, Shenzhen, China. X. Fu is also with University of Science and
Technology of China. S. Yang is also with Shenzhen Key Laboratory of
IoT Intelligent Systems and Wireless Network Technology, and Shenzhen
Research Institute of Big Data, Shenzhen, China. This work was funded
in part by Shenzhen Science and Technology Innovation Committee (Grant
ZDSYS20170725140921348, JCYJ20180508162604311).
†Corresponding author. Email: shyang@cuhk.edu.cn

Another class of generator matrices that are zigzag solvable
has a circulant structure [5]. Greedy algorithms have been
developed to determine whether a given shift-XOR system
is zigzag solvable [1], [16]. As far as we know, however, a
systematic treatment of zigzag solvability is not available in
literature.

In this paper, we study n × n shift-XOR systems where
the shift operations can be represented by a shift matrix with
integers, and possibly an ∞ symbol, as its entries. Here a
negative entry means truncation of the corresponding sequence
and ∞ means the corresponding sequence is not involved.
Similar representation of shift-XOR systems has been used
in literature, e.g., [16]. In Sec. II, we present the formal
definitions of zigzag solvability and successive solvability. The
latter is a special case of the former, by further requiring that
the symbols in a sequence are solved in ascending order of
the symbol indices. The definition of successive solvability
is general enough to include RID and circulant generator
matrices studied in [1], [2], [4], [5]. Moreover, the successive
solvability and zigzag solvability are proved to be equivalent
when the shift matrix does not have negative entries.

Our main result, presented in Sec. IV, is a necessary and
sufficient condition for a shift-XOR system to be successively
solvable when the shift matrix only has finite entries. Our
characterization is based on a graphical description of shift
matrices with finite entries. If one step of successive can-
cellation is applied to a shift-XOR system, a new system is
obtained. This relation connects one shift matrix to another
one, and a directed graph is hence created. We then show that
a shift matrix with only finite entries is successively solvable
if and only if it is in or connected to a strongly connected
component formed by cycles of shift matrices. See details in
Sec. III and IV. In the concluding remarks, we discuss how to
extend this characterization to shift matrices with ∞ entries.

II. SHIFT-ADD SYSTEMS AND SOLVABILITIES

We model a data symbol as a value in a finite abelian
group A with binary operation + and identity element 0. One
example of A is the set {0, 1} with exclusive OR (XOR) as
the binary operation. We denote sequences with entries from A
by lowercase letters in boldface, e.g., s, where the i-th entry
is denoted by s[i], for i = 0, 1, 2, . . . The subsequence of
s from the i-th entry onwards is denoted by s[i :]. We use
the convention that s[i] = 0 for i < 0. We denote the set
of nonnegative integers by N0 and the set of integers by Z.

Formally speaking, an infinite sequence s is a mapping from
Z to A with i 7→ 0 for i < 0.

A. Shift-Add System and Shift-Add Code

Definition 1 (shift operator zt). The shift operator zt is de-
fined such that for any infinite sequence s, the infinite sequence
zts is defined by (zts) [`] = s[` − t] for ` ≥ max{t, 0} and
(zts) [`] = 0 otherwise.

A shift-add system takes n infinite sequences x1, . . . ,xn as
input and produces m infinite sequences y1, . . . ,ym as output.
For i = 1, 2, . . . ,m, the ith output sequence yi is obtained by

yi :=

m∑
j=1

zaijxj , (1)

where aij are integers in Z for j = 1, 2, . . . , n. The summation
of sequences are performed componentwise. The integer aij
represents the number of positions we shifts the sequence xj .
We also use the convention that z∞ = 0, the scalar zero,
so that z∞s is the all-zero sequence. When aij = ∞, the
sequence xj is not involved in the summation in (1).

Definition 2. We call a matrix Φ = (zaij) a shift matrix, where
aij are integers or ∞. A shift matrix Φ = (zaij) can be more
conveniently represented by an integer matrix A = (aij). From
here on, we make no distinction between Φ and the integer
matrix A, and refer to both matrices as shift matrix.

Shift-XOR systems have been used in literature to construct
storage codes [1]–[10]. Here we use an example to illustrate
the application.

Example 1. Consider a storage system of 4 storage nodes
that can tolerate one node failure. A file formed by three
binary sequences x1,x2,x3 can be stored as coded sequences
y1, . . . ,y4:

y1

y2

y3

y4

 =

1 z z2

1 z2 z4

1 z3 z6

1 1 1

x1

x2

x3

 ,
where yi is stored at the ith storage node. To retrieve the file
from the system, it has been shown in [1], [2] that any 3 coded
sequences can be used to recover the file. Suppose y1,y2,y3

are read. The decoding is to solve a shift-XOR system with
the shift matrix 0 1 2

0 2 4
0 3 6

 . (2)

B. Zigzag Solvability and Successive Solvability

To discuss in general how to solve a shift-add system, we
first define what is called infinite linear system, which is more
general than (1). Given a sequence of symbols s, consider a
sequence u whose entries are the sum of some entries in s.
For j ∈ N0, suppose the jth entry u[j] is obtained by

u[j] =
∑
i∈Ej

s[i] (3)

for some finite index set Ej ⊂ N0. The additions in the above
equation are performed in A. The index sets Ej , for j ∈ N0,
define an encoding function: s 7→ u. We say that the infinite
linear system (3) is decodable, or solvable, if the encoding
function is injective on all sequences of symbols.

For practical implementation, an efficient method for solv-
ing the infinite system in (3) is preferred. One specific class
of encoding functions allows a simple sequential decoding
procedure as defined as follows.

Definition 3. An infinite linear system as in (3) is zigzag
solvable if there exist two functions f : N0 → N0 and g :
N0 → N0 such that

1) f is bijective;
2) {f(i)} ⊆ Eg(i) ⊆ {f(0), f(1), . . . , f(i)} for all i ∈ N0.

If we can find functions f and g satisfying the requirements
in Definition 3, we can recover s from u. The function f
specifies a decoding order for the symbols in s.

For the system in (1), we re-arrange the entries in the input
sequences x1, . . . ,xn in a single sequence s, and all entries
in output sequences y1, . . . ,ym into another sequence u. For
i ∈ N0, we let

s[in+ j − 1] := xj [i], u[im+ j − 1] := yj [i]. (4)

The encoding equation

yj [i] = x1[i− aj1] + x2[i− aj2] + · · ·+ xn[i− ajn]

can be represented as u[im+j−1] =
∑
k∈Eim+j−1

s[k] where

Eim+j−1 = N0 ∩ {(i− aj1)n, (i− aj2)n+ 1, . . . ,

(i− ajn)n+ n− 1}. (5)

For notational convenience, we regard xj [i]’s and yj [i]’s also
as the indices in+ j − 1 and im+ j − 1, respectively, in the
following discussion of this section, and re-write (5) as

Eyj [i] =
{
x1[i− aj1],x2[i− aj2], . . . ,xn[i− ajn]

}
∩ N0.

With the above notation, the definition of zigzag solvability
applies to shift-add systems as well. For practical implementa-
tion, it would be more preferable if the data symbols in xi can
be decoded in the order xi[0], xi[1], xi[2], . . . We formulate
a stronger notion of solvability as follows.

Definition 4 (successive solvability). A shift-add system in (1)
is successively solvable if it is zigzag solvable and the func-
tions f and g in Definition 3 satisfy an additional condition:

3) f−1(xj [`1]) < f−1(xj [`2]) whenever 0 ≤ `1 < `2, for
all j = 1, 2, . . . , n.

The last condition in Definition 4 guarantees that sym-
bol xj [`1] is computed before xj [`2] if `1 < `2. For a
successively solvable shift-add system, there exists a zigzag
solving algorithm that solves the symbols of each variable
sequence from “left” to “right”. That is, the algorithm will
solve the symbols of xi in the order xi[0], xi[1], xi[2], . . .
This definition of successively solvability is general enough

TABLE I
SUCCESSIVE DECODING OF THE SYSTEM WITH THE SHIFT MATRIX (2). IN

THE LAST THREE ROWS, k = 2, 3, . . .

Iteration i f(i) Equation used in solving f(i)

0 x1[0] y3[0] = x1[0]
1 x1[1] y3[1] = x1[1]
2 x1[2] y3[2] = x1[2]
3 x2[0] y2[2] = x2[0] + x1[2]
3k − 2 x1[k+1] y3[k+1] = x1[k+1]+x2[k−2]+x3[k−5]
3k − 1 x2[k−1] y2[k+1] = x1[k+1]+x2[k−1]+x3[k−3]
3k x3[k−2] y1[k] = x1[k] + x2[k−1] + x3[k−2]

TABLE II
ZIGZAG DECODING IN EXAMPLE 2. IN THE LAST THREE ROWS,

k = 2, 3, . . .

Iteration i f(i) Equation used in solving f(i)

0 x2[1] y2[0] = x2[1]
1 x1[1] y1[1] = x1[1] + x2[1]
2 x2[0] y3[0] = x2[0] + x1[1]
3 x1[0] y1[0] = x1[0] + x2[0]
3k − 2 x2[k] y2[k − 1] = x2[k]
3k − 1 x1[k] y1[k] = x1[k] + x2[k]
3k x3[k − 2] y3[k− 1] = x1[k]+x2[k− 1]+x2[k− 2]

to include the existing algorithms for solving special shift-add
systems in literature [1], [2], [4], [5], [10].

For example, the shift-add system with the shift matrix (2) is
successively solvable. The order of decoding the data symbols
are listed in Table I. However, a zigzag solvable system is
not necessarily successively solvable. We present a counter-
example below.

Example 2. Consider the shift-add system given by the shift
matrix 0 0 ∞

∞ −1 ∞
−1 0 1

 .

This shift-add system is zigzag solvable. The order of decoding
the symbols are shown in Table II. Note that the definition
of successive decoding is violated. In fact, there is no way to
successively decode the system. We have to first decode x2[`],
for some ` ≥ 1 to kick-start the zigzag decoding procedure.

The shift-add system in Example 2 is somewhat patholog-
ical. However, the next proposition states that for systems
satisfying some mild conditions, the two notions of solvability
are equivalent.

Proposition 1. For a shift-add system corresponding to a non-
negative shift matrix, it is zigzag solvable if and only if it is
successively solvable.

Henceforth in this paper, we focus on square shift matrices.

III. REDUCTION OF SHIFT-ADD SYSTEMS

In this section we introduce some notation that can help to
describe the transition of the shift matrices when solving the
corresponding shift-add systems successively. Parts of the dis-
cussion here can also be found in literature, e.g., [16], but the

systematic treatment of equivalence and reducing operations
is novel. To motivate the definitions to be introduced in this
section, we first consider a 3× 3 example.

Example 3. Consider the following shift-add system.y1

y2

y3

 =

z−2 z−1 1
z−2 1 z2

1 z3 z6

x1

x2

x3

 , (6)

where xi, for i = 1, 2, 3, are the input sequences, and yi, for
i = 1, 2, 3, are the output sequences. The first two symbols
in the sequence x1 are truncated in y1,y2 and appear in the
linear system only through y3.

This system is successively solvable. We first solve the
first 3 symbols in x1 using the first 3 symbols in y3. After
subtracting x[0], x[1] and x[2] from y1 and y2, the linear
system is reduced toy′1y′2

y′3

 =

 z z−1 1
z 1 z2

1 1 z3

x1[3 :]
x2

x3

 . (7)

Note that the shift matrix in (7) is obtained from the shift
matrix in (6) by multiplying the first column by z3 and then
dividing the third row by z−3. Correspondingly, x[0], x[1] and
x[2] as well as y[0], y[1] and y[2] are removed from the linear
system.

We can then obtain the first symbol in x2 from the first
symbol of y′2. We subtract the value of x2[0] from y′1 and y′3,
and transform the linear system toy′′1y′′2

y′′3

 =

 z 1 1
1 1 z
1 z z3

x1[3 :]
x2[1 :]
x3

 . (8)

The shift matrix in (8) is obtained from the shift matrix in (7)
by multiplying the second column by z and then dividing the
second row by z.

From the first symbols in y′′3 , y′′1 and y′′2 we can obtain the
first symbols in x1[3 :], x2[1 :], and x3, by solving a system
of three equations that can be permuted to an lower triangular
form, y′′3 [0]

y′′2 [0]
y′′1 [0]

 =

1 0 0
1 1 0
1 1 1

x1[3]
x2[1]
x3[0]

 .
After subtracting x1[3], x2[1] and x3[0], the linear system
reduces to another linear system with the same shift matrix
as in (8). We can thus proceed to successively decode the rest
of the data symbols.

Definition 5. We denote the ith row of shift matrix A by ai,
and an all-one row vector by 1. For two row vectors a = (aj)
and b = (bj) of the same length with integer components, we
write a � b if aj ≥ bj for all j. In particular, for a constant
c, we write a � c if a � c1.

Definition 6. We say that two n× n shift matrices A and B
are equivalent if for each i = 1, 2, . . . , n, we have

ai = bi + ci1

for some integers c1, c2, . . . , cn, with ci = 0 whenever ai
or bi contain some negative entries. We adopt the convention
∞ + c = ∞− c = ∞ for any integer c. We write A ∼ B if
A is equivalent to B.

The relation defined in Definition 6 is an equivalence
relation on all n× n shift matrices. Any two equivalent shift
matrices define the same infinite linear system.

Example 4. The shift matrices1 −1 0
1 0 2
3 3 6

 and

1 −1 0
1 0 2
0 0 3

are equivalent. They represent the same system as in (7).

Definition 7. The equivalence class of matrix A is denoted as
{A}. A shift matrix A with min(ai) = 0 whenever ai � 0 is
said to be in canonical form. Each equivalence class includes
a unique matrix A in canonical form, which is called the
(canonical) representative of the equivalence class.

We can assume that a shift matrix does not contain any row
whose entries are all ∞, otherwise the corresponding output
sequence is the all-zero sequence and contains no information
about the input symbol sequences. Hence the canonical repre-
sentative of the equivalence class is well-defined. From now
on, when we talk about a shift matrix, we usually refer to the
canonical representative of its equivalence class.

Definition 8. Given a shift matrix A, the (i, j)-entry is called
a pivot if (i) aij ≥ 0, and (ii) aij < aij′ for all j′ 6= j. We
say that a shift matrix A is reductive if A contains a pivot.

For a shift matrix A with the (i, j)-entry as a pivot, the first
symbol in the ith output sequence is precisely equal to the first
symbol in the jth input sequence. We can thus solve the first
symbol in the jth input sequence by reading the first symbol
in the ith output sequence, subtract it from the linear system,
and reduce the system to another linear system. We call this
process reducing operation with respect to the ith row. For
instance, in Example 4, the (2, 2)-entry is a pivot, and we can
directly read off the first symbol in sequence x2 from the first
symbol in y2. Meanwhile there is no pivot in the first and
third row.

After a reducing operation, the shift matrix is modified to
another shift matrix. The difference between the two shift
matrices before and after a reducing operation is given by
the matrix in the following:

Definition 9 (reducing operator). For k, ` ∈ {1, 2, . . . , n}, we
define the n × n matrix Rk` by (Rk`)ij = δj,` − δi,k, where
δi,k and δj,` are the Kronecker’s delta function.

The matrix Rk` can be obtained from the zero matrix
by adding 1 to each of the entries in the `th column and
subtracting 1 from each of the entries in the kth row. If a
shift matrix A is reductive with the (k, `)-entry as a pivot, we
obtain the matrix Rk`+A if we perform a reducing operation
with respect to the kth row.

Lemma 2. Suppose the (k, `)-entry of an n × n shift matrix
A is a pivot. If A′ ∼ A, then the (k, `)-entry is a pivot of A′,
and (Rk` +A) ∼ (Rk` +A′).

Lemma 2 implies that we can define the reducing operation
on the equivalence classes of shift matrices.

Example 5. The process of solving the shift-add system with
the shift matrix (2) can be expressed in terms of the matrices
Rk`’s as follows. The initial shift matrix is

A0 =

0 1 2
0 2 4
0 3 6

 .
We apply the reducing operation with respect to the 3rd row
three times. The shift matrix becomes

A1 := R31 +R31 +R31 +A0 =

3 1 2
3 2 4
0 0 3

 ,
which is exactly the shift matrix of the system after three
iterations in Table I. The (2, 2)-entry in A1 is a pivot, and we
perform a reducing operation on the second row. We obtain

A2 := R22 +A1 =

3 2 2
2 2 3
0 1 3

 ,
which is the shift matrix of the system after iteration 3
in Table I. The decoding process continues by repeatedly
applying reducing operations on the 3rd row, the 2nd row
and the 1st row. The shift matrices after these three reducing
operations does not change: A2 = R13 + R22 + R31 + A2.
The successively solving algorithm can be represented by a
sequence of reducing operators:

R31, R31, R31, R22, R31, R22, R13, . . .

repeating the underlined part ad infinitum.
In general the order of the reducing operators cannot be

changed. For instance, in Example 5, the order of applying the
reducing operations to row 3, row 2 and row 1 is important.
It is not valid if we apply the reducing operations in the order
of row 1, row 2 and row 3, because we are not able to find
the appropriate pivot in each step.

IV. GRAPHICAL CHARACTERIZATION OF SUCCESSIVELY
SOLVABILITY

In this section we consider shift-add systems whose shift
matrices do not contain the ∞ symbol, i.e., each output
sequence is a function of all input sequences.

Definition 10. For a fixed positive integer n, we define
a directed (multi)graph Gn whose vertices are equivalence
classes of shift matrices with finite entries. Given two shift
matrices A and B with finite entries, there is a directed edge
from {A} to {B} if A has a pivot (k, `) and Rk` +A ∼ B.

For the ease of notation, we write A Rk`−−→ B if there is a
directed edge from {A} to {B} with respect to the (k, `) pivot

4 2 2
3 2© 3
0 0 2

 5 3 2©
3 2 2
0 0 1

4 3 2©
2 2 2
0© 1 2

R22

3 2 2
2 2 3
0© 1 3

R31

R13

R13

R312 1 2
2 2 4
0© 1 4

3 1 2
3 2© 4
0 0 3

1 1 2
1 2 4
0© 2 5

0 1 2
0 2 4
0© 3 6

R31

R31

R31

R22

Fig. 1. Successively solving the shift-add system with the shift matrix (2).
Pivots are circled.

in A. It follows from definition that there is no self-loop in
Gn. When there are multiple pivots in the same column of A,
there are multiple edges from {A} to {B}

Definition 11. For positive integer L, we define a path of

length L in Gn as a sequence of edges Ak
Rikjk−−−−→ Bk, k =

1, 2, . . . , L, where Bk ∼ Ak+1 for k = 1, 2, . . . , L− 1. When
BL ∼ A1, the path is called a cycle. Given two shift matrices,
A and B, we say that a vertex {B} is reachable from vertex
{A} in Gn if there is a path from {A} to {B}.

Remark. A path in this paper need not be simple, i.e., a
path may contain repeated vertices. When we refer to a path
consisting of distinct vertices, we will emphasize that it is a
simple path.

The successively solving algorithm of the system discussed
in Example 5 can be illustrated as a subgraph of G3 in Fig. 1.
Although the graph Gn is an infinite graph, its degrees are
finite, and the arguments in what follows can be done on a
finite part of it.

Lemma 3. For each shift matrix A, the set of vertices in Gn
that are reachable from {A} is finite.

Theorem 4. For a cycle in Gn, there is a permutation σ of
{1, 2, . . . , n} such that the reducing operations in the cycle
are represented by Riσ(i) for i = 1, . . . , n.

Theorem 5. Let {A} be an equivalence class of shift matrices
contained in a cycle of Gn. If there is a path from {A} to {B}
for some shift matrix B, then there is a path from {B} to {A},
i.e., {A} and {B} are contained in a cycle.

Definition 12. A directed graph H in general is said to
be strongly connected if for any two vertices v and u in
H, there is a path from v to u and a path from u to
v. A strongly connected component is a maximal strongly
connected subgraph. In Gn, a strongly connected component
is also called a cycle component. The permutation σ defined in
Theorem 4 is uniquely defined throughout a cycle component,
and is called the character of the cycle component.

The contrapositive of Theorem 5 suggests that for two
equivalence classes of shift matrices {A} and {A′} in different
cycle components, there exists no path between {A} and {A′}
in Gn. This property is extended in the next theorem.

[
0 2
0 0

] [
0 1
1 0

]
R22

R11
[
0 0
2 0

]
R22

R11

[
−a+ b 2 + b

0 a

]
R∗21

[
b 2− a+ b
a 0

]R∗22

[
0 a

2− a+ b b

]
R∗11

[
a 0

2 + b −a+ b

]R∗12

Fig. 2. An extended cycle component in G2. Here a and b are positive
integers. The dashed arrow indicate a directed edge belong to an extended
cycle component by not in a cycle component, and the superscript ∗ means
that the corresponding reducing operations are applied multiple times.

Theorem 6. Suppose {B} and {C} are two vertices contained
in two distinct cycle components in Gn, and there is a path
from {A} to {B}. Then there is no path from {A} to the cycle
component containing {C}.

Definition 13. Given a cycle component in Gn, we define its
extended cycle component be the set of vertices {A} in Gn
that connects to the given cycle component, i.e., there is a
path from {A} to any vertex in the cycle component.

We note that the notion of extended cycle component is
well-defined by Theorem 6.

Theorem 7. An n×n shift-add system defined by shift matrix
A with only finite entries is successively solvable if and only
if {A} is contained in an extended cycle component of Gn.

We illustrate an extended cycle component in G2 in Fig. 2.
The dashed arrow indicate a directed edge belong to an
extended cycle component by not in a cycle component,
and the superscript ∗ means that the corresponding reducing
operations are applied multiple times. We note that the shift
matrices in the middle has two pivots, and hence we can
go to the left or the right from this shift matrix. The shift-
add system associated to the shift matrices in Fig. 2 are all
successively solvable. The character of the cycle component
is σ(1) = 1 and σ(2) = 2. We only see R11 and R22 within
the cycle component, but we may have other types of reducing
operations outside the cycle component.

V. CONCLUDING REMARKS

Our characterization of successively solvable shift matrices
also sheds some light on shift matrices with ∞ entries. For a
successively solvable shift matrix A with only finite entries,
there must exist a path P from {A} that includes a cycle.
For any subset C of entries (i, j) in A such that Rij is
not used by any edge in the path P , let A′ be the matrix
obtained by modifying these entries of A in C to be ∞. The
sequence of reducing operations used in P can be performed
on A′ successively, and hence it can be argued that A′ is also
successively solvable.

REFERENCES

[1] C. W. Sung and X. Gong, “A ZigZag-decodable code with the MDS
property for distributed storage systems,” in IEEE Int. Symp. on Inf.
Theory, Jul. 2013, pp. 341–345.

[2] X. Fu, Z. Xiao, and S. Yang, “Overhead-free in-place recovery scheme
for XOR-based storage codes,” in IEEE Int. Conf. Trust, Security and
Privacy in Computing and Communications, Sep. 2014, pp. 552–557.

[3] M. Dai, X. Wang, H. Wang, X. Lin, and B. Chen, “Bandwidth overhead-
free data reconstruction scheme for distributed storage code with low
decoding complexity,” IEEE Access, vol. 5, pp. 6824–6832, 2017.

[4] X. Gong and C. W. Sung, “Zigzag decodable codes: Linear-time erasure
codes with applications to data storage,” J. Comput. Syst. Sci., vol. 89,
pp. 190–208, 2017.

[5] M. Dai, C. W. Sung, H. Wang, X. Gong, and Z. Lu, “A new Zigzag-
decodable code with efficient repair in wireless distributed storage,”
IEEE Trans. Mob. Comput., vol. 16, no. 5, pp. 1218–1230, 2017.

[6] M. Dai, B. Mao, X. Gong, C. W. Sung, W. Zhuang, and X. Lin,
“Zigzag-division multiple access for wireless networks with long and
heterogeneous delays,” IEEE Trans. Aerosp. Electron. Syst., vol. 55,
no. 6, pp. 2822–2835, 2019.

[7] H. Hou, K. W. Shum, M. Chen, and H. Li, “BASIC regenerating code:
Binary addition and shift for exact repair,” in IEEE Int. Symp. on Inf.
Theory, Jul. 2013, pp. 1621–1625.

[8] X. Fu, Z. Xiao, and S. Yang, “Overhead-free in-place recovery and repair
schemes of XOR-based regenerating codes,” in IEEE Int. Symp. on Inf.
Theory, Jul. 2015, pp. 341–345.

[9] H. Hou, P. P. C. Lee, and Y. S. Han, “Zigzag-decodable reconstruction
codes with asymptotically optimal repair for all nodes,” IEEE Transac-
tions on Communications, vol. 18, no. 10, pp. 5999–6011, Oct. 2020.

[10] X. Fu, S. Yang, and Z. Xiao, “Decoding and repair schemes for shift-
XOR regenerating codes,” IEEE Transactions on Information Theory,
vol. 66, no. 12, pp. 7371–7386, 2020.

[11] T. Nozaki, “Fountain codes based on zigzag decodable coding,” in Proc.
IEEE Int. Symp. on Information Theory and its Applications, 2014, pp.
274–278.

[12] B. Jun, P. Yang, J. No, and H. Park, “New fountain codes with improved
intermediate recovery based on batched zigzag coding,” IEEE Trans.
Commun., vol. 65, no. 1, pp. 23–36, 2017.

[13] Y. Murayama and T. Nozaki, “Efficient scheduling of serial itera-
tive decoding for zigzag decodable fountain codes,” in International
Symposium on Information Theory and Its Applications, ISITA 2018,
Singapore, October 28-31, 2018. IEEE, 2018, pp. 286–290.

[14] P. Shi, Z. Wang, D. Li, and W. Xiang, “Zigzag decodable online
fountain codes with high intermediate symbol recovery rates,” IEEE
Trans. Commun., vol. 68, no. 11, pp. 6629–6641, 2020.

[15] C. W. Sung and X. Gong, “Combination network coding: Alphabet size
and zigzag decoding,” in 2014 International Symposium on Information
Theory and its Applications. IEEE, 2014, pp. 699–703.

[16] M. Dai, B. Mao, X. Gong, C. W. Sung, W. Zhuang, and X. Lin,
“Zigzag-division multiple access for wireless networks with long and
heterogeneous delays,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 55, no. 6, pp. 2822–2835, 2019.

