On the Equivalence between Pre-transformed and Parity-check Monomial Codes

Yuanxin Guo* ${ }^{* 1}$, Zihan Tang ${ }^{2}$, Bin Li^{2}
1: Wireless Technology Laboratory, Huawei Technologies \& The Chinese University of Hong Kong, Shenzhen
2: Wireless Technology Laboratory, Huawei Technologies

Highlights

All pre-transformed monomial codes can be regarded as parity-check monomial codes, vice versa.

- Algorithm: reduce any pre-transformation to a parity-check transformation
Pre-transformation preserves the code distance for decreasing monomial codes.
- Pre-transformation reduce \#. min. distance codewords for certain monomial codes.

Pre-transformed monomial codes

- Monomial codes: For some subset \mathcal{F} of monomials over n variables,

$$
\mathcal{C}(\mathcal{F})=\operatorname{span}\left\{(f(\boldsymbol{u}))_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}}: f \in \mathcal{F}\right\}
$$

is the monomial code generated by \mathcal{F}

- Matrix form: The evaluation vectors of monomials $f(\boldsymbol{u})_{\boldsymbol{u} \in \mathbb{F}_{2}^{n}}$ and the rows in
$\boldsymbol{H}_{N}=\left[\begin{array}{l}10 \\ 1 \\ 1\end{array}\right]^{\otimes n}$ has a 1-1 correspondence [2]. Generally, a monomial code has the form:

$$
\mathcal{C}:=\left\{\boldsymbol{c}=\boldsymbol{u} \boldsymbol{H}_{N}: u_{j}=0 \text { if } j \notin \mathcal{I}\right\},
$$

where $\mathcal{I} \subset[N]$ is the information set of \mathcal{C}
Lemma. RM codes and polar codes are monomial codes.

- Pre-transformed monomial code [3] Given monomial code (2), the code

$$
\begin{equation*}
\mathcal{C}_{T}:=\left\{\boldsymbol{c}=\boldsymbol{u} \boldsymbol{T} \boldsymbol{H}_{N}: u_{j}=0 \text { if } j \notin \mathcal{I}\right\} \tag{3}
\end{equation*}
$$

is the pre-transformed code of \mathcal{C} by \boldsymbol{T}, where $\boldsymbol{T} \in \mathcal{T}_{N}=\left\{\boldsymbol{A} \in \mathbb{F}_{2}^{n \times n}: A_{i, i}=1, A_{i, j}=0, \forall i<j\right\}$

Contact Information

- Yuanxin Guo: yuanxinguo@link.cuhk.edu.cn - Zihan Tang: tangzihan1@huawei.com - Bin Li: binli.binli@huawei.com

Equivalence between parity-check and pre-transformation

- Parity-check monomial codes: for code (2), a parity-check equation of bit $j \in \mathcal{I}^{C}=[N] \backslash \mathcal{I}$ for a bit sequence $\boldsymbol{u} \in \mathbb{F}_{2}^{N}$ takes the form
$u_{j} \oplus \underset{i \in \mathcal{I}_{j}}{\oplus} u_{i}=0, \mathcal{I}_{j} \subset([j-1] \cap \mathcal{I})$.
This changes a frozen bit into a parity bit. A parity-check monomial code of \mathcal{C} takes the form

$$
\tilde{\mathcal{C}}:=\left\{\boldsymbol{c}=\boldsymbol{u} \boldsymbol{H}_{N}: u_{j} \oplus \bigoplus_{i \in \mathcal{I}_{j}} u_{i}=0 \text { if } j \notin \mathcal{I}\right\}
$$

- Parity-check as pre-transformation: construct \boldsymbol{S} such that $S_{i, j}=1$ iff $i=j$ or $(i, j) \in \mathcal{I}_{j} \times \mathcal{I}^{C}$. Then $\boldsymbol{S} \in \mathcal{T}_{N}$ and $\tilde{\mathcal{C}}=\mathcal{C}_{S}$.
A parity-check of \mathcal{C} can be regarded as a pre-transformation of \mathcal{C}.
- Define $\mathcal{S}_{\mathcal{C}} \subset \mathcal{T}_{N}$ to be the set of parity-check transform matrices w.r.t. code \mathcal{C} :
$\mathcal{S}_{\mathcal{C}}=\left\{\boldsymbol{A} \in \mathcal{T}_{N}: A_{i, j}=0, \forall i<j,\left(i \in \mathcal{I}^{C}\right.\right.$ or $\left.\left.j \in \mathcal{I}\right)\right\}$
A matrix $\boldsymbol{S} \in \mathcal{S}_{\mathcal{C}}$ defines a parity-check of code \mathcal{C}.
- Theorem. Given length- N monomial code \mathcal{C}, For any $\boldsymbol{T} \in \mathcal{T}_{N}, \exists \boldsymbol{S} \in \mathcal{S}_{\mathcal{C}}$ such that $\mathcal{C}_{T}=\mathcal{C}_{S}$.
- Algorithm:

Require: $\boldsymbol{T} \in \mathcal{T}_{N}$.
Ensure: $\boldsymbol{S} \in \mathcal{S}_{\mathcal{C}}$ s.t. $\mathcal{C}_{T}=\mathcal{C}_{S}$
1: for $i \in \mathcal{I}^{C}$ do
2: $\quad \boldsymbol{t}^{(i)}(i$-th row of $\boldsymbol{T}) \leftarrow \boldsymbol{e}_{i}(i$-th unit vector)
3: Initialize $\boldsymbol{U} \leftarrow \boldsymbol{I}_{N}$ ($N \times N$ identity matrix)
4: for $i \in \mathcal{I}$ do
5: $\quad \boldsymbol{u}^{(i)} \leftarrow \boldsymbol{t}^{(i)} \wedge(j \in \mathcal{I})_{j=1}^{n}(\wedge:$ logical AND)
6: $\boldsymbol{S}=\boldsymbol{U} \backslash \boldsymbol{T}$ (solve $\boldsymbol{U} \boldsymbol{S}=\boldsymbol{T}$)
A pre-transformation of \mathcal{C} can be regarded as a parity-check of \mathcal{C}.

- Remark: Usually, $\left|\mathcal{S}_{\mathcal{C}}\right| \ll\left|\mathcal{T}_{N}\right|$
e.g. For $(32,16)-$ RM codes $\mathcal{R}(5,2),|\mathcal{T}|=2^{496}$, whereas $\left|\mathcal{S}_{\mathcal{C}}\right|=2^{35}$

Minimum distance

Simulation (selected)

- PAC codes [1]: A PAC code specified by ($N, k, \mathcal{I}, \boldsymbol{g}$) is given by (3) with \boldsymbol{T} being the Toeplitz matrix generated by $(\boldsymbol{g}, \mathbf{0})$ and

$$
\mathcal{I}=\arg \max \left\{\sum_{i \in \mathcal{I}} \operatorname{wt}\left((i-1)_{2}\right):|\mathcal{I}|=k\right\}
$$

Table 1:Weight Spectrum of $\mathcal{C}=(32,16, \mathcal{I},(1))$ | 0 | 8 | 12 | 16 | 20 | 24 | 32 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 60 | 13888 | 36518 | 13888 | 620 | 1 | 6201388836518138886201

Table 2:Simulation Results of $\mathcal{C}^{\prime}=(32,16, \mathcal{I},(1,1,0,1))$ Weight Spectrum of $\mathcal{C}^{\prime}=(32,16, \mathcal{I},(1,1,0,1))$

Weight Spectrum of Transformed PC Monomial Code

0	8	10	12	14	16	18	20	22	24	32

$\begin{array}{lllllllllllll}1 & 1364 & 2048 & 6720 & 14336 & 18598 & 14336 & 6720 & 2048 & 364 & 1\end{array}$
Parity Check Equations

$u_{9} \oplus u_{8}=0$ $u_{11} \oplus u_{8}=0$

$u_{11} \oplus u_{8}=0$
$u_{17} \oplus u_{12} \oplus u_{15} \oplus u_{16}=0$
$u_{18} \oplus u_{12} \oplus u_{14} \oplus u_{15}=0$
$u_{19} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16}=0$
$u_{21} \oplus u_{20}=0$
$u_{25} \oplus u_{20} \oplus u_{23} \oplus u_{24}=0$
Our simulation shows:
(i) the correctness of Algorithm;
(ii) PAC codes have improved weight spectrum.

References

[1] Erdal Arkan.

From sequential decoding to channel polarization and back again
arXiv preprint arXiv:1908.09594. 2019
[2] Magali Bardet, Vlad Dragoi, Ayoub Otmani, and Jean-Pierre Tillich.
Algebraic properties of polar codes from a new polynomial formalism.
In 2016 IEEE International Symposium on Information Theory (ISIT), pages 230-234. IEEE, 2016
3] Bin Li, Huazi Zhang, and Jiaqi Gu. On pre-transformed polar codes. arXiv preprint ar Xiv:1912 06359

