

1: Wireless Technology Laboratory, Huawei Technologies & The Chinese University of Hong Kong, Shenzhen 2: Wireless Technology Laboratory, Huawei Technologies

Highlights

- All pre-transformed monomial codes can be regarded as parity-check monomial codes, vice versa.
- Algorithm: reduce any *pre-transformation* to a parity-check transformation
- Pre-transformation preserves the code distance for decreasing monomial codes.
- Pre-transformation reduce #. min. distance codewords for certain monomial codes.

Pre-transformed monomial codes

• Monomial codes: For some subset \mathcal{F} of monomials over n variables,

$$C(\mathcal{F}) = \operatorname{span}\{(f(\boldsymbol{u}))_{\boldsymbol{u}\in\mathbb{F}_2^n} : f\in\mathcal{F}\}$$
(1)

- is the monomial code generated by \mathcal{F} . • Matrix form: The evaluation vectors of monomials $f(\boldsymbol{u})_{\boldsymbol{u}\in\mathbb{F}_2^n}$ and the rows in
- $\boldsymbol{H}_N = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{\otimes n}$ has a 1-1 correspondence [2]. Generally, a monomial code has the form:

 $\mathcal{C} := \{ \boldsymbol{c} = \boldsymbol{u} \boldsymbol{H}_N : u_j = 0 \text{ if } j \notin \mathcal{I} \},\$ where $\mathcal{I} \subset [N]$ is the *information set* of \mathcal{C} . Lemma. RM codes and polar codes are monomial codes.

• Pre-transformed monomial code [3]: Given monomial code (2), the code

 $\mathcal{C}_T := \{ \boldsymbol{c} = \boldsymbol{u} \boldsymbol{T} \boldsymbol{H}_N : u_j = 0 \text{ if } j \notin \mathcal{I} \} \quad (3)$ is the *pre-transformed code* of \mathcal{C} by \mathcal{T} , where $\boldsymbol{T} \in \mathcal{T}_N = \{ \boldsymbol{A} \in \mathbb{F}_2^{n \times n} : A_{i,i} = 1, A_{i,j} = 0, \forall i < j \}$

Contact Information

- •Yuanxin Guo: yuanxinguo@link.cuhk.edu.cn
- Zihan Tang: tangzihan1@huawei.com
- Bin Li: binli.binli@huawei.com

On the Equivalence between Pre-transformed and Parity-check Monomial Codes

Yuanxin Guo^{*1}, Zihan Tang², Bin Li²

Equivalence between parity-check and pre-transformation

• Parity-check monomial codes: for code (2) ,
a parity-check equation of bit $j \in \mathcal{I}^C = [N] \setminus \mathcal{I}$
for a bit sequence $\boldsymbol{u} \in \mathbb{F}_2^N$ takes the form
$u_j \oplus \bigoplus_{i \in \mathcal{I}_j} u_i = 0, \ \mathcal{I}_j \subset ([j-1] \cap \mathcal{I}).$
This changes a <i>frozen bit</i> into a <i>parity bit</i> . A
parity-check monomial code of $\mathcal C$ takes the form
$\widetilde{\mathcal{C}} := \{ \boldsymbol{c} = \boldsymbol{u} \boldsymbol{H}_N : u_j \oplus \bigoplus_{i \in \mathcal{I}_j} u_i = 0 \text{ if } j \notin \mathcal{I} \}$
• Parity-check as pre-transformation:
construct S such that $S_{i,j} = 1$ iff $i = j$ or
$(i,j) \in \mathcal{I}_j \times \mathcal{I}^C$. Then $\mathbf{S} \in \mathcal{T}_N$ and $\tilde{\mathcal{C}} = \mathcal{C}_S$.
A parity-check of \mathcal{C} can be regarded as a
pre-transformation of \mathcal{C} .
• Define $\mathcal{S}_{\mathcal{C}} \subset \mathcal{T}_N$ to be the set of <i>parity-check</i>
transform matrices w.r.t. code \mathcal{C} :
$\mathcal{S}_{\mathcal{C}} = \{ \mathbf{A} \in \mathcal{T}_N : A_{i,j} = 0, \forall i < j, (i \in \mathcal{I}^C \text{ or } j \in \mathcal{I}) \}$
A matrix $S \in S_C$ defines a parity-check of code C .
• Theorem. Given length-N monomial code C.
For any $\mathbf{T} \in \mathcal{T}_N$, $\exists \mathbf{S} \in \mathcal{S}_C$ such that $\mathcal{C}_T = \mathcal{C}_S$.
• Algorithm:
Require: $T \in \mathcal{T}_N$.
Ensure: $S \in \mathcal{S}_{\mathcal{C}}$ s.t. $\mathcal{C}_T = \mathcal{C}_S$.
1: for $i \in \mathcal{I}^C$ do
2: $oldsymbol{t}^{(i)}$ (i-th row of $oldsymbol{T}$) $\leftarrow oldsymbol{e}_i$ (i-th unit vector)
3: Initialize $oldsymbol{U} \leftarrow oldsymbol{I}_N \ (N imes N \ ext{identity matrix})$
4: for $i \in \mathcal{I}$ do
5: $oldsymbol{u}^{(i)} \leftarrow oldsymbol{t}^{(i)} \wedge (j \in \mathcal{I})_{j=1}^n$ (A: logical AND)
6: $old S = old U \setminus old T$ (solve $old US = old T$)
A pre-transformation of $\mathcal C$ can be
regarded as a parity-check of \mathcal{C} .
• Remark: Usually, $ \mathcal{S}_{\mathcal{C}} << \mathcal{T}_N $.
e.g. For (32, 16)-RM codes $\mathcal{R}(5, 2), \mathcal{T} = 2^{496},$

whereas $|\mathcal{S}_{\mathcal{C}}| = 2^{35}$.

Minimum distance

• Pre-transformation increases distance: for any length-N monomial code \mathcal{C} and $T \in \mathcal{T}_N$, $d(\mathcal{C}) \leq d(\mathcal{C}_T) \ [3].$

• Decreasing monomial codes [2]: impose order ' \preceq ' on monomials over *n* variables. Code (1) is decreasing if $f \in \mathcal{F}, g \preceq f \Rightarrow g \in \mathcal{F}.$ Lemma. RM codes and polar codes are decreasing monomial codes.

• Theorem. Given length-N monomial code \mathcal{C} and any $\mathbf{S} \in \mathcal{S}_{\mathcal{C}}, d(\mathcal{C}) = d(\mathcal{C}_S).$ *Idea*: construct $\boldsymbol{c} \in \mathcal{C} \cap \mathcal{C}_S$ with wt $(\boldsymbol{c}) = d(\mathcal{C})$.

Pre-transformation preserves the code distance for decreasing monomial codes.

Minimum weight codewords

• #. minimum weight codewords:

 $M(\mathcal{C}) = |\{ \boldsymbol{c} \in \mathcal{C} : \operatorname{wt}(\boldsymbol{c}) = d(\mathcal{C}) \}|$

A 'metric' for the weight spectrum of code \mathcal{C} . Motivation: since $d(\mathcal{C}_S) = d(\mathcal{C})$, use this to study the weight spectrum after pre-transformation.

• Assumptions: for monomial code (2), assume (i) \mathcal{C} is decreasing;

(ii) $i^* = \min\{i \in \mathcal{I} : \operatorname{wt}(\boldsymbol{h}^{(i)}) = d(\mathcal{C})\}, \text{ then }$ $\exists \ell > i^*, \ \ell \in \mathcal{I}^C \text{ s.t. } \operatorname{wt}(\boldsymbol{h}^{(\ell)}) < d(\mathcal{C})$ (iii) $e = \min\{e' \in \mathbb{N} : N - i^* > 2^{n-e'}\}, \Delta(\mathcal{C}) =$ $\min_{\boldsymbol{c}\in\mathcal{C},\,\mathrm{wt}(\boldsymbol{c})>d(\mathcal{C})}\{(\mathrm{wt}(\boldsymbol{c})-d(\mathcal{C}))\},\,\mathrm{then}\,\,\bar{\Delta}(\mathcal{C})>2^{e}.$

• **Proposition**. For code C satisfying assumptions, $\exists \mathbf{S} \in \mathcal{S}_{\mathcal{C}} \ s.t. \ M(\mathcal{C}_S) < M(\mathcal{C})$ • Corollary. For RM codes $\mathcal{C} = \mathcal{R}(n, r)$ with $n-1 \geq 2r, r \geq 2, \exists \mathbf{S} \in \mathcal{S}_{\mathcal{C}} \text{ s.t. } M(\mathcal{C}_S) < M(\mathcal{C}).$

Pre-transformation improves the weight spectrum of certain monomial codes.

- again.

Simulation (selected)

$k, \mathcal{I}, \boldsymbol{g}) \text{ is given by } (3) \text{ with } \boldsymbol{T} \text{ being the olitz matrix generated by } (\boldsymbol{g}, \boldsymbol{0}) \text{ and} \\ \mathcal{I} = \arg \max \left\{ \sum_{i \in \mathcal{I}} \operatorname{wt}((i-1)_2) : \mathcal{I} = k \right\} \\ \text{Table 1:Weight Spectrum of } \mathcal{C} = (32, 16, \mathcal{I}, (1)) \\ \boxed{0 \ 8 \ 12 \ 16 \ 20 \ 24 \ 32}} \\ \boxed{1 \ 620 \ 13888 \ 36518 \ 13888 \ 620 \ 1}} \\ \text{Ie 2:Simulation Results of } \mathcal{C}' = (32, 16, \mathcal{I}, (1, 1, 0, 1)) \\ \hline \text{Weight Spectrum of } \mathcal{C}' = (32, 16, \mathcal{I}, (1, 1, 0, 1)) \\ \hline \text{Weight Spectrum of } \mathcal{C}' = (32, 16, \mathcal{I}, (1, 1, 0, 1)) \\ \hline \text{Weight Spectrum of } \mathcal{C}' = (32, 16, \mathcal{I}, (1, 1, 0, 1)) \\ \hline \text{Weight Spectrum of Transformed PC Monomial Code} \\ \hline 0 \ 8 \ 10 \ 12 \ 14 \ 16 \ 18 \ 20 \ 22 \ 24 \ 32 \\ \hline 1 \ 364 \ 2048 \ 6720 \ 14336 \ 18598 \ 14336 \ 6720 \ 2048 \ 364 \ 1} \\ \hline \text{Parity Check Equations} \\ \hline u_{10} \oplus u_8 = 0 \\ u_{11} \oplus u_8 = 0 \\ u_{13} \oplus u_{12} \oplus u_{15} \oplus u_{16} = 0 \\ u_{18} \oplus u_{12} \oplus u_{14} \oplus u_{15} = 0 \\ u_{19} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0 \\ u_{21} \oplus u_{20} = 0 \\ \hline \end{array}$	C codes [1]: A PAC code specified by	
plitz matrix generated by $(\boldsymbol{g}, \boldsymbol{0})$ and $\mathcal{I} = \arg \max \{ \sum_{i \in \mathcal{I}} \operatorname{wt}((i-1)_2) : \mathcal{I} = k \}$ Table 1:Weight Spectrum of $\mathcal{C} = (32, 16, \mathcal{I}, (1))$ $\begin{array}{c c c c c c c c c c c c c c c c c c c $	$(k, \mathcal{I}, \boldsymbol{g})$ is given by (3) with \boldsymbol{T} being the)
$\mathcal{I} = \arg \max \{ \sum_{i \in \mathcal{I}} \operatorname{wt}((i-1)_2) : \mathcal{I} = k \}$ Table 1:Weight Spectrum of $\mathcal{C} = (32, 16, \mathcal{I}, (1))$ $\boxed{0 \ 8 \ 12 \ 16 \ 20 \ 24 \ 32}{1 \ 620 \ 13888 \ 36518 \ 13888 \ 620 \ 1}$ le 2:Simulation Results of $\mathcal{C}' = (32, 16, \mathcal{I}, (1, 1, 0, 1))$ $\boxed{0 \ 8 \ 10 \ 12 \ 14 \ 16 \ 18 \ 20 \ 22 \ 24 \ 32}{1 \ 364 \ 2048 \ 6720 \ 14336 \ 18598 \ 14336 \ 6720 \ 2048 \ 364 \ 1}$ Weight Spectrum of Transformed PC Monomial Code $\boxed{0 \ 8 \ 10 \ 12 \ 14 \ 16 \ 18 \ 20 \ 22 \ 24 \ 32}{1 \ 364 \ 2048 \ 6720 \ 14336 \ 18598 \ 14336 \ 6720 \ 2048 \ 364 \ 1}$ Parity Check Equations $u_9 \oplus u_8 = 0$ $u_{13} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0$ $u_{19} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0$ $u_{21} \oplus u_{20} = 0$	plitz matrix generated by $(\boldsymbol{g}, \boldsymbol{0})$ and	
Table 1:Weight Spectrum of $\mathcal{C} = (32, 16, \mathcal{I}, (1))$ 0 8 12 16 20 24 32 1 620 13888 36518 13888 620 1 le 2:Simulation Results of $\mathcal{C}' = (32, 16, \mathcal{I}, (1, 1, 0, 1))$ Weight Spectrum of $\mathcal{C}' = (32, 16, \mathcal{I}, (1, 1, 0, 1))$ Weight Spectrum of $\mathcal{C}' = (32, 16, \mathcal{I}, (1, 1, 0, 1))$ 0 1 364 2048 6720 14336 18598 14336 6720 2048 364 1 Weight Spectrum of Transformed PC Monomial Code 0 Mathematical Bases 14336 6720 2048 364 1 Parity Check Equations uage uge uge uge uge uge uge uge uge uge u	$\mathcal{I} = \arg \max\{\sum_{i \in \mathcal{I}} \operatorname{wt}((i-1)_2) : \mathcal{I} = k\}$	}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Table 1:Weight Spectrum of $\mathcal{C} = (32, 16, \mathcal{I}, (1))$	
le 2:Simulation Results of $\mathcal{C}' = (32, 16, \mathcal{I}, (1, 1, 0, 1))$ Weight Spectrum of $\mathcal{C}' = (32, 16, \mathcal{I}, (1, 1, 0, 1))$ 0 8 10 12 14 16 18 20 22 24 32 1 364 2048 6720 14336 18598 14336 6720 2048 364 1 Weight Spectrum of Transformed PC Monomial Code 0 8 10 12 14 16 18 20 22 24 32 1 364 2048 6720 14336 18598 14336 6720 2048 364 1 Parity Check Equations $u_9 \oplus u_8 = 0$ $u_{13} \oplus u_{12} = 0$ $u_{13} \oplus u_{12} \oplus u_{15} \oplus u_{16} = 0$ $u_{18} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus 0$ $u_{19} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0$ $u_{21} \oplus u_{20} = 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Weight Spectrum of $\mathcal{C}' = (32, 16, \mathcal{I}, (1, 1, 0, 1))$ 0 8 10 12 14 16 18 20 22 24 32 1 364 2048 6720 14336 18598 14336 6720 2048 364 1 Weight Spectrum of Transformed PC Monomial Code 0 8 10 12 14 16 18 20 22 24 32 1 364 2048 6720 14336 18598 14336 6720 2048 364 1 Weight Spectrum of Transformed PC Monomial Code 0 8 10 12 14 16 18 20 22 24 32 1 364 2048 6720 14336 18598 14336 6720 2048 364 1 Parity Check Equations u10 u11 \oplus u12 u16 0 u11 \oplus u12 \oplus u15 \oplus u16 0 u17 u12 \oplus u14 \oplus u15 0 u16 0 u11 \oplus	le 2:Simulation Results of $\mathcal{C}' = (32, 16, \mathcal{I}, (1, 1, 0, \mathbb{C}))$, 1)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Weight Spectrum of $\mathcal{C}' = (32, 16, \mathcal{I}, (1, 1, 0, 1))$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Weight Spectrum of Transformed PC Monomial Code 0 8 10 12 14 16 18 20 22 24 32 1 364 2048 6720 14336 18598 14336 6720 2048 364 1 Parity Check Equations $u_{10} \oplus u_8 = 0$ $u_{11} \oplus u_8 = 0$ $u_{13} \oplus u_{12} = 0$ $u_{13} \oplus u_{12} \oplus u_{15} \oplus u_{16} = 0$ $u_{18} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0$ $u_{19} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0$ $u_{21} \oplus u_{20} = 0$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Weight Spectrum of Transformed PC Monomial Code	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Parity Check Equations $u_{9} \oplus u_{8} = 0$ $u_{11} \oplus u_{8} = 0$ $u_{13} \oplus u_{12} = 0$ $u_{17} \oplus u_{12} \oplus u_{15} \oplus u_{16} = 0$ $u_{18} \oplus u_{12} \oplus u_{14} \oplus u_{15} = 0$ $u_{19} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0$ $u_{21} \oplus u_{20} = 0$	$1 \ 364 \ 2048 \ 6720 \ 14336 \ 18598 \ 14336 \ 6720 \ 2048 \ 364 \ 1$	
$u_{9} \oplus u_{8} = 0$ $u_{11} \oplus u_{8} = 0$ $u_{13} \oplus u_{12} = 0$ $u_{17} \oplus u_{12} \oplus u_{15} \oplus u_{16} = 0$ $u_{18} \oplus u_{12} \oplus u_{14} \oplus u_{15} = 0$ $u_{19} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0$ $u_{21} \oplus u_{20} = 0$	Parity Check Equations	
$u_{11} \oplus u_8 = 0$ $u_{13} \oplus u_{12} = 0$ $u_{17} \oplus u_{12} \oplus u_{15} \oplus u_{16} = 0$ $u_{18} \oplus u_{12} \oplus u_{14} \oplus u_{15} = 0$ $u_{19} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0$ $u_{21} \oplus u_{20} = 0$	$u_9 \oplus u_8 = 0$	
$u_{13} \oplus u_{12} = 0$ $u_{17} \oplus u_{12} \oplus u_{15} \oplus u_{16} = 0$ $u_{18} \oplus u_{12} \oplus u_{14} \oplus u_{15} = 0$ $u_{19} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0$ $u_{21} \oplus u_{20} = 0$	$u_{11} \oplus u_8 = 0$	
$egin{aligned} & u_{17} \oplus u_{12} \oplus u_{15} \oplus u_{16} = 0 \ & u_{18} \oplus u_{12} \oplus u_{14} \oplus u_{15} = 0 \ & u_{19} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0 \ & u_{21} \oplus u_{20} = 0 \end{aligned}$	$u_{13} \oplus u_{12} = 0$	
$u_{18} \oplus u_{12} \oplus u_{14} \oplus u_{15} = 0$ $u_{19} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0$ $u_{21} \oplus u_{20} = 0$	$u_{17} \oplus u_{12} \oplus u_{15} \oplus u_{16} = 0$	
$u_{19} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0$ $u_{21} \oplus u_{20} = 0$	$u_{18} \oplus u_{12} \oplus u_{14} \oplus u_{15} = 0$	
$u_{21} \oplus u_{20} = 0$	$u_{19} \oplus u_{12} \oplus u_{14} \oplus u_{15} \oplus u_{16} = 0$	
	$u_{21} \oplus u_{20} = 0$	
$u_{25} \oplus u_{20} \oplus u_{23} \oplus u_{24} = 0$	$u_{25} \oplus u_{20} \oplus u_{23} \oplus u_{24} = 0$	

• Our simulation shows:

(i) the correctness of **Algorithm**;

(ii) PAC codes have improved weight spectrum.

References

[1] Erdal Arıkan.

From sequential decoding to channel polarization and back

arXiv preprint arXiv:1908.09594, 2019.

[2] Magali Bardet, Vlad Dragoi, Ayoub Otmani, and Jean-Pierre Tillich. Algebraic properties of polar codes from a new polynomial

formalism.

In 2016 IEEE International Symposium on Information Theory (ISIT), pages 230–234. IEEE, 2016.

[3] Bin Li, Huazi Zhang, and Jiaqi Gu. On pre-transformed polar codes. arXiv preprint arXiv:1912.06359, 2019.