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Abstract—Polar codes and Reed-Muller codes belong to a fam-
ily of codes called monomial codes. In this work, we study pre-
transformed monomial codes, which cover several constructions
including parity-check (PC) codes and PAC codes. We show
that any pre-transformed monomial code can be transformed
into a parity-check monomial code with the same codewords,
and give an explicit algorithm for this transformation. We
further prove that for certain monomial codes, the minimum
weight is invariant under pre-transformation, but specific pre-
transformation matrices can be constructed to reduce the number
of minimum-weight codewords. These results offer theoretical
support for the success of various heuristics, e.g., PAC codes
attain dispersion bound, and provide guidance for designing short
codes.

Index Terms—Polar codes, RM codes, code distance.

I. INTRODUCTION

Polar codes [1] are the first explicitly constructed codes that
achieve channel capacity. The code construction is tailored for
an efficient successive cancellation (SC) decoder. However, the
performance of polar codes under SC decoding is inferior to
LDPC or turbo codes. A successive cancellation list (SCL)
decoding algorithm was proposed in [2], whose performance
approaches maximum likelihood (ML) decoding as the list size
L increases. Nonetheless, the performance of ML decoding is
undermined by the small code distance of polar codes.

Several methods have been proposed to improve the weight
spectrum of polar codes, e.g., eBCH polar subcodes [3] and
LWB-polar codes [4]. In addition, a class of such construc-
tions, including CRC-aided (CA) polar codes [5], RM-polar
codes [6], PC-polar codes [7], and PAC codes [8], can be fit
in a unifying framework called pre-transformed polar codes,
which was proposed in [9]. In [9], it was shown that pre-
transformation does not reduce code distance. A recursive
formula was proposed in [10] to calculate the average weight
spectrum of pre-transformed polar codes.

In general, the method of pre-transformation can be ex-
tended to a larger family of codes having similar structure to
polar codes, which are called monomial codes. Our subsequent
discussion is aimed for general pre-transformed monomial
codes, where we first inspect the structure of these codes,
and then derive properties of their weight spectra. Our main
contributions include:

• Prove that all pre-transformed monomial codes, where
PAC codes are special instances, can be regarded as
instances of PC monomial codes.

• Present an algorithm that constructs a PC monomial code
having the same codewords as any given pre-transformed
monomial code.

• Prove that pre-transformation does not change the code
distance for a subclass of monomial codes containing RM
codes and polar codes.

• Construct pre-transformation matrices that strictly reduce
the number of minimum-weight codewords for monomial
codes satisfying certain assumptions.

The paper is organized as follows. In Section II, we review
the basics of Reed-Muller codes, polar codes, and monomial
codes. Pre-transformed monomial codes are introduced in the
end of Section II and we prove in Section III that these codes
are equivalent to PC monomial codes, where an algorithm is
given to convert a pre-transformed monomial code to a PC
monomial code. In Section IV, we present some new results
on the weight spectrum of pre-transformed monomial codes.

II. PRELIMINARIES

A. Reed-Muller (RM) Codes

Let F =
[
1 0
1 1

]
be a binary matrix, and let the N × N

matrix HN = F⊗n be the nth Kronecker power of matrix
F , where N = 2n, and F⊗n = F ⊗ F⊗(n−1). From [1,
Proposition 17], the weight of the ith row of HN is

wt(h
(i)
N ) = 2wt((i−1)2), ∀1 ≤ i ≤ N

where wt(·) is the Hamming weight of a tuple or a vector,
and (·)2 is the binary expansion of an integer.

The Reed-Muller code R(n, r) is given by

R(n, r) := {c = uHN : uj = 0 if j /∈ Jr},

where Jr = {i ∈ [N ] : wt((i−1)2) ≥ n− r} ⊂ [N ], with [N ]
being the set of positive integers not greater than N . Otherwise
put, the codewords are all possible linear combinations of
rows in HN with row indices in Jr. This code has length
N , dimension

∑r
`=0

(
n
`

)
, and minimum distance 2n−r [11].



B. Polar Codes

For binary memoryless symmetric (BMS) channels, an
(N, k)-polar code C can be constructed in a similar fashion
to RM codes [1], with

C := {c = uHN : uj = 0 if j /∈ I},

where I contains the indices of the k-most reliable bit sub-
channels under SC decoding. We refer to I as information set
and its complement IC := [N ] \ I as frozen set.

C. Monomial codes

Monomial codes form a large family which contains Reed-
Muller codes and polar codes [12]. A monomial in n variables
{x0, · · · , xn−1} over F2 takes the form∏n−1

i=0 xri
i , ri ∈ {0, 1},∀ 0 ≤ i ≤ n− 1

since x2 ≡ x for all x ∈ F2. We denote the set of all such
monomials by Mn. The general form of a monomial code is

C(F) = span{ev(f) : f ∈ F}, for some F ⊂Mn,

where ev(f) := (f(u))u∈Fn
2

is the evaluation vector of
polynomial f , obtained by evaluating f at every point in Fn

2 .
By independence of monomials, dim(C(F)) = |F|.

It is shown in [12] that the evaluation vectors of monomials
in Mn correspond exactly to the rows in HN :

h
(i)
N = ev

(∏n−1
j=0 x

ij
j

)
, where N − i =

∑n−1
j=0 ij2

j .

Denote
∏n−1

j=0 x
ij
j by f (i), any code of the form C := {c =

uHN : uj = 0 if j /∈ I} with I ⊂ [N ] can be seen as
a monomial code, generated by F = {f (i) : i ∈ I}. The
following proposition is thus immediate.

Lemma 1. RM codes and polar codes are monomial codes.

D. Pre-transformed Monomial Codes

Given length N monomial code C, we can transform the
code via a binary pre-transformation (PT) matrix T [9], where

CT := {c′ = uTHN : uj = 0 if j /∈ I}

is the pre-transformed code by T . Generally, a PT matrix
should satisfy two properties: (i) T is upper-triangular; (ii)
Ti,i = 1, ∀ i ∈ [N ]. We denote the collection of all N × N
PT matrices by TN .

When T is the N×N identity matrix, the pre-transformation
is trivial in the sense that CT = C. The pre-transformed
monomial codes cover a large family of modified polar codes,
which includes the concatenation of PC with polar codes [7],
and the recently proposed PAC codes [8].

III. EQUIVALENCE BETWEEN PRE-TRANSFORMED
MONOMIAL CODES AND PARITY-CHECK MONOMIAL CODES

In this section, we investigate the family of codes obtained
by pre-transforming a given monomial code C. We prove that
the family is equivalent to the code family obtained by adding
parity-checks to C, suggesting some ‘good’ codes in practice,
e.g., PAC codes [8] are both special cases of PC polar codes.
We further provide an explicit algorithm for converting a pre-
transformed monomial code to a parity-check (PC) monomial
code with the same set of codewords. We first briefly introduce
PC monomial codes.

A parity-check monomial code is another way of transform-
ing monomial codes [7]. In particular, in a bit sequence u,
some frozen bits are changed to parity-check (PC) bits such
that for parity bit with index j, a PC function of the form

uj ⊕
⊕

i∈Ij ui = 0

is to be satisfied for some parity-check set Ij ⊂ ([j− 1]∩I).
Specially, we can regard frozen bits as special PC bits, where
for frozen bit j, Ij = ∅. Generally, a PC monomial code can
be written in the following form:

C := {c = uHN : uj ⊕
⊕

i∈Ij ui = 0 if j /∈ I},

Parity-check monomial codes can be equally interpreted as
pre-transformed monomial codes, where the PT matrix T can
be constructed such that Ti,j = 1 iff i = j or (i, j) ∈ Ij×IC .
Since the PC function for any j ∈ IC can be written as

uj =
⊕

i∈Ij ui =
⊕

i∈Ij vi = vj ⊕
⊕

i∈Ij vi,

where u = vT , v ∈ V , where V is defined to be the vector
subspace of all valid bit sequences:

V = {v ∈ Fn
2 : vj = 0 if j /∈ I}.

Motivated by the structure of the PT matrices constructed from
PC monomial codes, we make the following definition:

Definition 1 (Parity-check-transform matrix). Given mono-
mial code C with information set I, S is an N × N parity-
check-transform (PCT) matrix with respect to code C if

1) S ∈ TN , i.e., S upper-triangular and Si,i = 1, ∀ i ∈ [N ].
2) For 1 ≤ i < j ≤ N , Si,j = 1 only if i ∈ I, j ∈ IC .

We denote the collection of N × N parity-check-transform
(PCT) matrices with respect to code C by SC .

We now prove the main result of this section.

Theorem 2. Let C be a length-N monomial code with infor-
mation set I. For any PT matrix T ∈ TN , there exists a PCT
matrix S ∈ SC such that CT = CS .

Proof. Let U = T and T ′ = T , where we in addition require
Ui,j = 0 if i < j, i, j ∈ IC and T ′i,j = 0 if i < j, i ∈ IC .
Note that U is invertible with upper-triangular inverse. Let
S = U−1T ′, we claim that S is the PT matrix we desire.



It is not difficult to observe that S is upper-triangular since
both U−1 and T ′ are upper-triangular. We now check Si,i = 1.
Note that since US = T ′ we have⊕N

`=1 Ui,`S`,i = Ui,iSi,i = T ′′i,i = Ti,i = 1

for all i ∈ [N ], Since Ui,i = 1 by construction, we have
Si,i = 1 for all i ∈ [N ].

We now show that S ∈ SC . It suffices to show that whenever
i < j, either i ∈ IC or j ∈ I implies Si,j = 0. We use the
notation −→m(j) to represent the j-th column of matrix M .
• Si,j = 0 for all i < j and j ∈ I. Note that by construction,

we have −→u (j) =
−→
t′ (j), ∀ j ∈ I and also⊕N

i=1 Si,j · −→u (i) =
−→
t′ (j),

where −→u (i) are linearly independent, which implies Sj,j = 1
is the unique nonzero entry in the jth column.
• Si,j = 0 for all i < j, i, j /∈ I. Note that by construction,

we have u(i) = ei, ∀ i /∈ I, where u(i) denotes the ith row
of U . Hence for any i /∈ I, Ui,` = 1 if and only if ` = i.
Note that T ′i,j = 0 for all i < j, i, j /∈ I, then for any j /∈ I,⊕N

`=1 S`,j · Ui,` = Si,jUi,i = T ′i,j ,

implying Si,j = 0 for all i < j, i, j /∈ I.
Finally, it remains to show that CT = CS . Recall the

definition of the vector subspace V before Definition 1. By
the definition of pre-transformed monomial codes, it suffices to
show V T = V S. We first show V T = V T ′. This is obvious
since T and T ′ only differ in the rows whose indices are in IC ,
yet vj = 0 for j ∈ IC . Now we show V S = V T ′ = VUS.
It suffices to show V = VU . Since U is invertible, it suffices
to show VU ⊂ V . Note that for any v ∈ V , we have

vU =
⊕

i∈I viu
(i) ∈ V,

thus finishing the proof.

The following is an explicit algorithm that constructs an
PCT matrix S that pre-transforms C to the identical code CT
for any PT matrix T .

Algorithm 1 PCT MATRIX CONSTRUCTION

Require: Pre-transformation matrix T ∈ TN .
Ensure: Parity-check-transformation matrix S ∈ SC .

1: for i ∈ [N ] \ I do
2: t(i) ← ei
3: end for
4: Initialize U ← IN
5: for i ∈ I do
6: u(i) ← t(i) ∧ (j ∈ I)nj=1 (logical AND of t(i) with

the logical vector whose jth entry is given by the boolean
value of j ∈ I)

7: end for
8: S = U \ T (MATLAB notation, solves US = T )

Algorithm 1 and the discussion prior to Theorem 2 together
imply that any pre-transformed monomial code CT can be
regarded as a parity-check monomial code with PC functions

uj ⊕
⊕

i∈Sj ui = 0, ∀ j /∈ I, where Sj := {i ∈ I, Si,j = 1}.

and S is the output of Algorithm 1 when the input is T . The
following corollary is direct.

Corollary 3. Pre-transformed monomial codes are equivalent
to parity-check monomial codes.

We close this section by an example illustrating that the size
of the PCT matrix family is usually tiny compared to that of
PT matrix family. This shows our result is significant in terms
of designing a pre-transformation matrix as it largely reduces
the size of searching space.

Example 1. Consider the second-order (32, 16)-RM codes
R(5, 2). The size of the PT matrix family is |T | = 2496,
whereas the size of the PCT matrix family is only |SC | = 235.

IV. WEIGHT STRUCTURE OF PRE-TRANSFORMED
MONOMIAL CODES

In this section, we present two results regarding the weight
spectrum of pre-transformed monomial codes. The first is on
the code distance, where we enhance the result in [9] and
prove that for decreasing monomial codes [12], the minimum
distance is invariant under pre-transformation. The second is
on the number of minimum-weight codewords, where we
prove that for decreasing monomial codes satisfying certain
assumptions, a PCT matrix can be constructed to reduce the
number of minimum weight codewords. The results suggest
that we can improve the weight spectrum by choosing appro-
priate PCT matrix to pre-transform the code, providing insights
for designing codes with moderate blocklengths.

A. Minimum distance of pre-transformed monomial codes

It has already been shown in [9] that pre-transformation
does not reduce minimum distance.

Lemma 4. For any length-N monomial code C and any PT
matrix T ∈ TN , d(C) ≤ d(CT ).

Extending this result, however, is generally difficult since
monomial codes is a rather large family. We now focus on a
more restrictive family of codes, yet still inclusive enough to
cover RM codes and polar codes.

Definition 2 (Monomial order, [12]). Two monomials of the
same degree in Mn are ordered as xi1 · · ·xir � xj1 · · ·xjr

if and only if is ≤ js for all 1 ≤ s ≤ r, where we assume
i1 < · · · < ir and j1 < · · · < jr. For monomials f, g ∈ Mn

of different degree, f � g if and only if there exists a divisor
g∗ of g of the same degree as f and f � g∗.

Definition 3 (Decreasing monomial code, [12]). A monomial
code C with information set I is said to be decreasing if i ∈ I
and f (j) � f (i) together implies j ∈ I.



Lemma 5 ([12]). RM codes and polar codes are decreasing
monomial codes.

We now show that for a decreasing monomial code C,
pre-transformation does not change the minimum distance.
Specially, our previous discussion allows us to limit our scope
on PCT matrices rather than PT matrices.

Theorem 6. For any length-N decreasing monomial code C
and any PT matrix S ∈ SC , d(C) = d(CS).

Proof. By Lemma 4, It suffices to prove that there exists a
codeword in CS with weight d(C). Let I be the information
set, then N + 1 − 2r ∈ I, where r = log2(N/d(C)). This is
because

wt(h
(N+1−2r)
N ) = d(C) and f (N+1−2r) =

∏r−1
i=0 xi � f (i)

for all i ∈ I and wt(h(i)) = wt(h(N+1−2r)). Also note that
∀ j > N + 1 − 2r, f (j) | f (N+1−2r), hence j ∈ I. Consider
any S ∈ SC , we claim that s(N+1−2r) = eN+1−2r , the (N +
1 − 2r)-th unit vector. The upper-triangularity of S requires
that for all 1 ≤ j < N + 1 − 2r, SN+1−2r,j = 0, and for
N + 1 − 2r < j ≤ N , the second condition in Definition 1
requires SN+1−2r,j = 0 as j ∈ I. Hence the following vector

eN+1−2rSHN = eN+1−2rHN = h
(N+1−2r)
N

is a codeword of CS which has weight d(C).

B. Number of minimum weight codewords of pre-transformed
monomial codes

We have shown in the previous subsection that for decreas-
ing monomial code C, d(CS) = d(C) for any S ∈ SC . We are
now interested in the number of minimum weight codewords
of a code C:

M(C) := |{c ∈ C : wt(c) = d(C)}|,

which can be seen as another ‘metric’ for the weight spectrum.
For decreasing monomial code C satisfying certain assump-
tions, we aim to construct a PCT matrix S ∈ SC such that
M(CS) < M(C). We now state the condition for C.

Assumption 1. For decreasing monomial code C with infor-
mation set I, let i∗ be the smallest integer in I such that
wt(h(i∗)) = d(C). Then d(C) < 2n−1 and there exists ` ∈ IC
with ` > i∗ s.t. wt(h(`)) < d(C).

In addition, define the sub-minimum distance of a code C:

dsub(C) := min{wt(c′) : c′ ∈ C,wt(c′) > d(C)},

and let
e := min{e′ ∈ N : N − i∗ > 2n−e

′
}

we have the following proposition:

Proposition 7. For length-N decreasing monomial code C
with information set I selected according to Assumption 1,
suppose in addition that dsub(C) − d(C) > 2e, there exists
S ∈ SC such that M(CS) < M(C).

Proof. For simplicity, let r∗ := N
d(C) − 1 be the maximum

degree of the monomials that generate the code. Define

L := N + 1− 2n−e > i∗.

Note that f (L) =
∏n−e−1

u=0 xu. It is not hard to verify that
L ∈ IC : if deg(f (i∗)) ≥ n − e there must be ` > i∗ s.t.
deg(f (`)) > n − e, but this is impossible; if deg(f (i∗)) <
n− e = deg(f (L)), L ∈ IC by choice of i∗. Since N + 1−
2n−e−1 < i∗ ≤ N − 2n−e, xn−e | f (i∗). We let K be the
largest integer less than L s.t. deg(f (K)) = r∗. It is not hard
to observe that

K = 2n−e + 2r
∗ − 1 and f (K) = xn−e ·

∏r∗−2
i=0 xi

Clearly, by decreasing property, K ∈ I.
Define S such that Si,j = 1 iff i = j or (i, j) = (K,L).

Obviously S ∈ SC . Note that for any bit sequence u such that
wt(uHN ) > d(C),

wt(uSHN ) ≥ wt(uHN )−wt(h(L)
N ) ≥ dsub(C)−2e > d(C).

It suffices to consider the codewords in C that attain mini-
mum weight. More explicitly, since pre-transformation does
not reduce minimum distance, we only need to construct a
minimum-weight codeword in C whose corresponding code-
word in CS has larger weight than d(C). Define bit sequence
v where vi = 1 iff i ∈ {K,K + 1}. The codeword
vHN = h

(K)
N ⊕ h

(K+1)
N is of minimum weight since

f (K+1) = xn−e ·
∏r∗−2

i=1 xi ⇒ f (K) = x0 · f (K+1),

indicating that h(K)
N equals 1 at exactly half of the positions

where h
(K+1)
N equals 1. Now vSHN = vHN⊕h(L)

N . Letting
f̃ = f (K) + f (K+1), we directly have (x0 + 1) | f̃ , but
meanwhile x0 | f (L). These two polynomials do not evaluate
to 1 simultaneously, therefore,

wt(vSHN ) = wt(vHN ) + wt(h
(L)
N ) > wt(vHN ),

concluding the proof.

We close this section by showing that for RM codes with
particular rates, the previous proposition is applicable.

Corollary 8. For RM codes C = R(n, r) with n − 1 ≥ 2r,
r ≥ 2, there exists S ∈ SC such that M(CS) < M(C)

The proof is easily obtained by applying McEliece’s Theo-
rem [13, Corollary 13, Ch. 15].

V. SIMULATION

In this section, we verify the correctness of Algorithm 1.
In particular, we transform PAC codes [8] to parity-check
monomial codes, and then compare the weight spectrum of
both codes.

We first briefly introduce PAC codes. A PAC code is
specified by four parameters (N, k, I, g), where the (N, k)-
code C is given by

C = {c = uTHN : uj = 0 if j /∈ I}.



The matrix T is an upper triangular Toeplitz matrix which
serves as a convolution operation with length-(m+1) impulse
response g = (g0, · · · , gm). By convention, g0 = gm = 1. It
is hence straightforward that C falls into the category of pre-
transformed monomial codes. It is commented in [8] that a
heuristic method of choosing I is based on score function:
s : [N ] → R, and elements of I is selected to be the
indices corresponding to the k-largest scores (with ties broken
arbitrarily). One such score function is the Reed-Muller (RM)
score function s(i) = wt((i − 1)2). Upon using this score
function, we recover the RM codes when T = I .

In the following we consider two PAC codes C′ =
(32, 16, I, g′), C′′ = (32, 16, I, g′′) with I selected according
to the RM score function, and g′ = (1, 1, 0, 1), g′′ =
(1, 0, 1, 1, 0, 1). In addition, we let C be the corresponding
Reed-Muller code without pre-transformation, or alternatively,
C = (32, 16, I, (1)). We list our results below.

TABLE I
WEIGHT SPECTRUM OF C = (32, 16, I, (1))

0 8 12 16 20 24 32
1 620 13888 36518 13888 620 1

TABLE II
SIMULATION RESULTS OF C′ = (32, 16, I, (1, 1, 0, 1))

Weight Spectrum of C′ = (32, 16, I, (1, 1, 0, 1))
0 8 10 12 14 16 18 20 22 24 32
1 364 2048 6720 14336 18598 14336 6720 2048 364 1

Weight Spectrum of Transformed PC Monomial Code
0 8 10 12 14 16 18 20 22 24 32
1 364 2048 6720 14336 18598 14336 6720 2048 364 1

Parity Check Equations
u9 ⊕ u8 = 0
u11 ⊕ u8 = 0
u13 ⊕ u12 = 0
u17 ⊕ u12 ⊕ u15 ⊕ u16 = 0
u18 ⊕ u12 ⊕ u14 ⊕ u15 = 0
u19 ⊕ u12 ⊕ u14 ⊕ u15 ⊕ u16 = 0
u21 ⊕ u20 = 0
u25 ⊕ u20 ⊕ u23 ⊕ u24 = 0

TABLE III
SIMULATION RESULTS OF C′′ = (32, 16, I, (1, 0, 1, 1, 0, 1))

Weight Spectrum of C′′ = (32, 16, I, (1, 0, 1, 1, 0, 1))
0 8 10 12 14 16 18 20 22 24 32
1 492 1024 10304 7168 27558 7168 10304 1024 492 1

Weight Spectrum of Transformed PC Monomial Code
0 8 10 12 14 16 18 20 22 24 32
1 492 1024 10304 7168 27558 7168 10304 1024 492 1

Parity Check Equations
u10 ⊕ u8 = 0
u11 ⊕ u8 = 0
u13 ⊕ u8 = 0
u17 ⊕ u12 ⊕ u14 ⊕ u15 = 0
u18 ⊕ u14 ⊕ u15 ⊕ u16 = 0
u19 ⊕ u16 = 0
u21 ⊕ u12 ⊕ u14 ⊕ u16 = 0
u25 ⊕ u12 ⊕ u15 ⊕ u20 ⊕ u22 ⊕ u23 = 0

In both examples we observe that the weight spectra of the
PAC code and its corresponding PC monomial code are the
same, which supports the validity of our algorithm. Further-
more, the numbers of minimum weight codewords in both
examples are strictly less than that of the original RM code.
This is in accordance to the comment in [8], i.e., choosing g
at random might be an acceptable design.

VI. CONCLUSION

In this paper, we give a theorem and an algorithm to estab-
lish the equivalence between pre-transformed monomial codes
and parity-check monomial codes. This result emphasizes the
theoretical importance of PC monomial codes proposed in [7],
in the sense that practical codes such as PAC codes belong
to the PC monomial code family. Furthermore, for certain de-
creasing monomial codes, specific pre-transformation matrices
can be constructed to strictly improve the weight spectrum.
Combining these two results, we know that pre-transformation
can indeed improve the code performance of polar or Reed-
Muller codes and the searching space can be reduced by only
designing the parity-check bits. However, how to design these
parity-check bits in order to obtain optimal (or near-optimal)
improvement of the weight spectrum is still an open problem.
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